Schmidt, Gunther; Kleemann, Bernd H. Integral equation methods from grating theory to photonics: an overview and new approaches for conical diffraction. (English) Zbl 1221.78050 J. Mod. Opt. 58, No. 5-6, 407-423 (2011). In the present paper, the boundary integral equation method is used for the investigation of diffraction gratings of different kinds as well as for photonic crystal diffraction gratings. The main settings are a conical mounting with one profile and separated multilayer gratings with photonics inclusions. In the final part of this paper, numerical experiments illustrate the abstract results. In particular, the transmission for conical incidence is studied at a blazed grating with large period-to-wavelength ratio. Reviewer: Teodora-Liliana Rădulescu (Craiova) Cited in 1 ReviewCited in 1 Document MSC: 78M15 Boundary element methods applied to problems in optics and electromagnetic theory 65R20 Numerical methods for integral equations 78A45 Diffraction, scattering Keywords:integral equation method; conical diffraction; diffraction gratings; photonic crystal gratings; plasmonic multilayer gratings PDF BibTeX XML Cite \textit{G. Schmidt} and \textit{B. H. Kleemann}, J. Mod. Opt. 58, No. 5--6, 407--423 (2011; Zbl 1221.78050) Full Text: DOI HAL References: [1] Hutley MC, Diffraction Gratings (1982) [2] DOI: 10.1080/09500349114550881 [3] Loewen EG, Diffraction Gratings and Applications (1997) [4] Wilson SJ, Opt. Acta 29 pp 993– (1982) [5] DOI: 10.1364/JOSAA.9.001206 [6] Petit R, Electromagnetic Theory of Gratings (1980) [7] DOI: 10.1016/0030-4018(91)90594-4 [8] DOI: 10.1364/AO.31.005910 [9] DOI: 10.1364/JOSAA.10.000434 [10] DOI: 10.1080/09500349808230637 [11] DOI: 10.1364/JOSAA.14.001562 [12] DOI: 10.1364/AO.28.003434 [13] DOI: 10.1364/JOSAA.14.000034 [14] DOI: 10.1364/JOSAA.14.000901 [15] Herzig HP, Micro-Optics: Elements, Systems and Applications (1997) [16] Turunen J, Diffractive Optics for Industrial and Commercial Applications (1997) [17] DOI: 10.1364/AO.38.000304 [18] DOI: 10.1364/AO.34.001707 [19] DOI: 10.1364/AO.35.001700 [20] DOI: 10.1080/09500340412331289547 · Zbl 1119.78324 [21] DOI: 10.1080/09500349114550141 · Zbl 0941.78532 [22] DOI: 10.1080/09500349608232807 [23] DOI: 10.1364/AO.41.001434 [24] Rathsfeld A, Commun. Comput. Phys. 1 pp 984– (2006) [25] DOI: 10.1364/JOSAA.27.000585 [26] DOI: 10.1016/0030-4018(72)90246-5 [27] DOI: 10.1016/0030-4018(73)90130-2 [28] DOI: 10.1364/JOSA.68.000490 [29] DOI: 10.1016/0030-4018(78)90035-4 [30] Botten LC, Opt. Acta 25 pp 481– (1978) [31] Botten LC, J. Opt. (Paris) 11 pp 161– (1980) [32] DOI: 10.1063/1.2359224 [33] DOI: 10.1364/AO.38.000047 [34] DOI: 10.1088/0963-9659/3/6/005 [35] DOI: 10.1364/OE.8.000209 [36] DOI: 10.1007/BF01396703 · Zbl 0422.65002 [37] DOI: 10.1137/0907058 · Zbl 0599.65018 [38] DOI: 10.1016/0030-4018(84)90169-X [39] Budzinski C, Optik 87 pp 121– (1991) [40] DOI: 10.1023/A:1004377501747 · Zbl 0922.76274 [41] DOI: 10.1364/JOSAA.26.002444 [42] DOI: 10.1364/JOSAB.26.001442 [43] DOI: 10.1364/OE.17.006218 [44] DOI: 10.1063/1.2919094 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.