×

Min- and max-entropy in infinite dimensions. (English) Zbl 1221.81036

Summary: We consider an extension of the conditional min- and max-entropies to infinite-dimensional separable Hilbert spaces. We show that these satisfy characterizing properties known from the finite-dimensional case, and retain information-theoretic operational interpretations, e.g., the min-entropy as maximum achievable quantum correlation, and the max-entropy as decoupling accuracy. We furthermore generalize the smoothed versions of these entropies and prove an infinite-dimensional quantum asymptotic equipartition property. To facilitate these generalizations we show that the min- and max-entropy can be expressed in terms of convergent sequences of finite-dimensional min- and max-entropies, which provides a convenient technique to extend proofs from the finite to the infinite-dimensional setting.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
94A17 Measures of information, entropy
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical Journal 27, 379–423 and 623–656 (1948) · Zbl 1154.94303
[2] Rényi, A.: On measures of entropy and information. Proc. of the 4th Berkley Symp. on Math. Statistics and Prob. 1, Berkeley, CA: Univ. of Calif. Press, 1961, pp. 547–561
[3] Barnum H., Nielsen M.A., Schumacher B.: Information transmission through a noisy quantum channel. Phys. Rev. A 57, 4153–4175 (1998)
[4] Schumacher B.: Quantum coding. Phys. Rev. A 51, 2738–2747 (1995)
[5] Renner, R.: Security of Quantum Key Distribution. Ph.D. thesis, Swiss Fed. Inst. of Technology, Zurich, 2005, Available at http://arXiv.org/abs/quant-ph/0512258v2 , 2006
[6] Renner, R., Wolf, S.: Smooth Renyi entropy and applications Proc. 2004 IEEE International Symposium on Information Theory, Piscataway, NJ: IEEE, 2004, p. 233
[7] Renes, J. M., Renner, R.: One-Shot Classical Data Compression with Quantum Side Information and the Distillation of Common Randomness or Secret Keys. http://arXiv.org/abs/1008.0452v2 [quant-ph], 2010
[8] Renner, R., Wolf, S., Wullschleger, J.: The Single-Serving Channel Capacity Proc. 2006 IEEE International Symposium on Information Theory, Piscataway, NJ: IEEE, 2006, pp. 1424–1427
[9] Tomamichel M., Colbeck R., Renner R.: A Fully Quantum Asymptotic Equipartition Property. IEEE Trans. Inf. Th. 55, 5840–5847 (2009) · Zbl 1367.81095
[10] Berta, M., Christandl, M., Renner, R.: A Conceptually Simple Proof of the Quantum Reverse Shannon Theorem. http://arXiv.org/abs/0912.3805v1 [quant-ph], 2009 · Zbl 1310.94047
[11] Berta M., Christandl M., Colbeck R., Renes J.M., Renner R.: The uncertainty principle in the presence of quantum memory. Nature Physics 6, 659–662 (2010)
[12] Datta N., Renner R.: Smooth Entropies and the Quantum Information Spectrum. IEEE Trans. Inf. Theor. 55, 2807–2815 (2009) · Zbl 1367.81022
[13] Han T.S.: Information-Spectrum Methods in Information Theory. Springer-Verlag, New York (2002)
[14] Han T.S., Verdu S.: Approximation theory of output statistics. IEEE Trans. Inform. Theory 39, 752–772 (1993) · Zbl 0784.94016
[15] Datta N.: Min- and Max-Relative Entropies and a New Entanglement Monotone. IEEE Trans. Inf. Theor. 55, 2816–2826 (2009) · Zbl 1367.81021
[16] Brandão F.G.S.L., Datta N.: One-shot rates for entanglement manipulation under non-entangling maps. IEEE Trans. Inf. Theor. 57, 1754 (2011) · Zbl 1366.81051
[17] Buscemi F., Datta N.: Entanglement Cost in Practical Scenarios. Phys. Rev. Lett 106, 130503 (2011)
[18] Mosonyi M., Datta N.: Generalized relative entropies and the capacity of classical-quantum channels. J. Math. Phys. 50, 072104 (2009) · Zbl 1284.94037
[19] Dahlsten O.C.O., Renner R., Rieper E., Vedral V.: Inadequacy of von Neumann entropy for characterizing extractable work. New J. Phys. 13, 053015 (2011)
[20] del Rio L., Åberg J., Renner R., Dahlsten O., Vedral V.: The thermodynamic meaning of negative entropy. Nature 474, 61–63 (2011)
[21] Scarani V., Bechmann-Pasquinucci H., Cerf N.J., Dušek M., Lütkenhaus N., Peev M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)
[22] Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer-Verlag, New York (1979) · Zbl 0421.46048
[23] König R., Renner R., Schaffner C.: The Operational Meaning of Min- and Max-Entropy. IEEE Trans. Inf. Th. 55, 4337–4347 (2009) · Zbl 1367.81028
[24] Tomamichel M., Colbeck R., Renner R.: Duality Between Smooth Min- and Max-Entropies. IEEE Trans. Inf. Th. 56, 4674–4681 (2010) · Zbl 1366.81107
[25] Lieb E.H., Ruskai M.B.: A Fundamental Property of Quantum-Mechanical Entropy. Phys. Rev. Lett. 30, 434–436 (1973)
[26] Lieb E.H.: Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math. 11, 267–288 (1973) · Zbl 0267.46055
[27] Lieb E.H., Ruskai M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)
[28] Owari M., Braunstein S.L., Nemoto K., Murao M.: Epsilon-convertibility of entangled states and extension of Schmidt rank in infinite-dimensional systems. Quant. Inf. and Comp. 8, 30–52 (2008) · Zbl 1154.81322
[29] Kraus, K.: Lecture Notes in Physics 190, States, Effects, and Operations. Berlin Heidelberg: Springer-Verlag, 1983
[30] Nielsen M.L., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[31] Uhlmann A.: The transition probability in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976) · Zbl 0355.46040
[32] Holenstein H., Renner R.: On the Randomness of Independent Experiments. IEEE Trans. Inf. Theor. 57(4), 1865–1871 (2011) · Zbl 1366.94189
[33] Kuznetsova A.A.: Quantum conditional entropy for infinite-dimensional systems. Theory Probab. Appl. 55, 782–790 (2010)
[34] Klein O.: Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre. Z. f. Phys. A 72, 767–775 (1931) · Zbl 0003.09601
[35] Lindblad G.: Entropy, Information and Quantum Measurements. Commun. Math. Phys. 33, 305–322 (1973)
[36] Lindblad G.: Expectations and Entropy Inequalities for Finite Quantum Systems. Commun. Math. Phys. 39, 111–119 (1974) · Zbl 0294.46052
[37] Holevo A.S., Shirokov M.E.: Mutual and Coherent Information for Infinite-Dimensional Quantum Channels. Probl. Inf. Transm. 46, 201–217 (2010) · Zbl 1241.94020
[38] Cover, T.M., Thomas, J.A.: Elements of Information Theory. 2nd ed. New York: Wiley, 2006 · Zbl 1140.94001
[39] Alicki R., Fannes M.: Continuity of quantum conditional information. J. Phys. A 37, L55–L57 (2004) · Zbl 1138.81344
[40] Horodecki M., Oppenheim J., Winter A.: Partial quantum information. Nature 436, 673–676 (2005)
[41] Berta, M.: Single-shot Quantum State Merging. Diploma thesis, ETH Zurich, February 2008, available at http://arXiv.org/abs/0912.4495v1 [quant-ph], 2009
[42] Grümm H.R.: Two theorems about $${\(\backslash\)mathcal{C}_{p}}$$ . Rep. Math. Phys. 4, 211–215 (1973) · Zbl 0258.47022
[43] Simon, B.: Trace Ideals and Their Applications. 2nd ed. Providence, RI: Amer. Math. Soc., 2005 · Zbl 1074.47001
[44] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. I: Functional Analysis. New York: Academic Press, 1978 · Zbl 0401.47001
[45] Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. Providence, RI: Amer. Math. Soc., 1957 · Zbl 0078.10004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.