Weyl-gauge symmetry of graphene. (English) Zbl 1221.81130

Summary: The conformal invariance of the low energy limit theory governing the electronic properties of graphene is explored. In particular, it is noted that the massless Dirac theory in point enjoys local Weyl symmetry, a very large symmetry. Exploiting this symmetry in the two spatial dimensions and in the associated three dimensional spacetime, we find the geometric constraints that correspond to specific shapes of the graphene sheet for which the electronic density of states is the same as that for planar graphene, provided the measurements are made in accordance to the inner reference frame of the electronic system. These results rely on the (surprising) general relativistic-like behavior of the graphene system arising from the combination of its well known special relativistic-like behavior with the less explored Weyl symmetry. Mathematical structures, such as the Virasoro algebra and the Liouville equation, naturally arise in this three-dimensional context and can be related to specific profiles of the graphene sheet. Speculations on possible applications of three-dimensional gravity are also proposed.


81T20 Quantum field theory on curved space or space-time backgrounds
82C70 Transport processes in time-dependent statistical mechanics
82D80 Statistical mechanics of nanostructures and nanoparticles
70S10 Symmetries and conservation laws in mechanics of particles and systems
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
Full Text: DOI arXiv


[1] Castro Nieto, A. H.; Guinea, F.; Peres, N. M.R.; Novoselov, K. S.; Geim, A. K., Rev. Mod. Phys., 81, 109 (2009)
[2] Iorio, A.; O’Raifeartaigh, L.; Sachs, I.; Wiesendanger, C., Nucl. Phys. B, 495, 433 (1997)
[3] Birrell, N. D.; Davies, P. C.W., Quantum Fields in Curved Space (1984), Cambridge University Press · Zbl 0972.81605
[4] de Juan, F.; Cortijo, A.; Vozmediano, M. A.H., Phys. Rev. B, 76, 165409 (2007)
[5] Katanaev, M. O.; Volovich, I. V., Ann. Phys., 216, 1 (1992)
[6] Kleinert, H., Gauge Fields in Condensed Matter, vol. 2 (1989), World Scientific: World Scientific Singapore
[7] Jackiw, R., Theor. Math. Phys., 148, 941 (2006)
[8] Iorio, A.; Lambiase, G.; Vitiello, G., Ann. Phys., 309, 151 (2004)
[9] Castorina, P.; Grumiller, D.; Iorio, A., Phys. Rev. D, 77, 124034 (2008)
[10] Iorio, A.; Vitiello, G., Mod. Phys. Lett. B, 8, 269 (1994)
[11] Ramond, P., Field Theory (1989), Addison-Wesley: Addison-Wesley Reading, MA
[12] Gibertini, M.; Tomadin, A.; Polini, M.; Fasolino, A.; Katsnelson, M. I., Phys. Rev. B, 81, 125437 (2010)
[14] Meyr, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S., Nature, 446, 60 (2007)
[15] Fasolino, A.; Los, J. H.; Katsnelson, M. I., Nat. Mater., 6, 858 (2007)
[16] Miranda, R.; Vazquez de Parga, A. L., Nat. Nanotech., 4, 549 (2009)
[18] Rickayzen, G., Green’s Functions and Condensed Matter (1980), Academic Press: Academic Press London · Zbl 0573.34025
[19] Iorio, A.; Sen, S.; Sen, S., Cent. Eur. J. Phys. D, 9, 157 (2011)
[20] Deser, S.; Jackiw, R.; ’t Hooft, G., Ann. Phys., 152, 220 (1984)
[21] Deser, S.; Jackiw, R.; Templeton, S., Ann. Phys., 140, 372 (1982)
[22] Carlip, S., Quantum Gravity in 2+1 Dimensions (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0938.83010
[23] Guralnik, G.; Iorio, A.; Jackiw, R.; Pi, S.-Y., Ann. Phys., 308, 222 (2003)
[27] Doubrovine, B.; Novikov, S.; Fomenko, A., Geometrie Contemporaine, vol. I (1982), MIR: MIR Moscow
[28] Liouville, J., J. Math. Pures et Appl., 1re Ser., 18, 71 (1853), Available from <http://portal.mathdoc.fr>
[29] D’Hoker, E.; Jackiw, R., Phys. Rev. D, 26, 3517 (1982)
[30] Witten, E., Phys. Rev. Lett., 38, 121 (1977)
[31] Horvathy, P. A.; Yera, J.-C., Lett. Math. Phys., 46, 111 (1998)
[32] Di Francesco, P.; Mathieu, P.; Senechal, D., Conformal Field Theory (1997), Springer: Springer New York · Zbl 0869.53052
[34] de Juan, F.; Cortijo, A.; Vozmediano, M. A.H., Nucl. Phys. B, 828, 625 (2010)
[35] Iorio, A.; Sen, S., Cent. Eur. J. Bio., 3, 4, 380 (2008)
[39] Jackiw, R.; Pi, S.-Y., Phys. Rev. Lett., 98, 266402 (2007)
[40] Pachos, J. K.; Stone, M.; Temme, K., Phys. Rev. Lett., 100, 156806 (2008)
[41] Raoux, A.; Polini, M.; Asgari, R.; Hamilton, A. R.; Fazio, R.; MacDonald, A. H., Phys. Rev. B, 81, 073407 (2010)
[42] Terrones, H.; Terrones, M.; Moran-Lopez, J. L., Curr. Sci., 81, 1011 (2001)
[43] Kholmanov, I.; Cavaliere, E.; Fanetti, M.; Cepek, C.; Gavioli, L., Phys. Rev. B, 79, 233403 (2009)
[44] Bañados, M.; Teitelboim, C.; Zanelli, J., Phys. Rev. Lett., 69, 1849 (1992)
[45] Jackiw, R.; Rebbi, C., Phys. Rev. D, 13, 3398 (1976)
[46] Chamon, C.; Hou, C.-Y.; Jackiw, R.; Mudry, C.; Pi, S-Y.; Semenoff, G., Phys. Rev. B, 77, 235431 (2008)
[48] Maloney, A.; Song, W.; Strominger, A., Phys. Rev. D, 81, 064007 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.