×

Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays. (English) Zbl 1221.82078

Summary: In this Letter, we have dealt with the problem of lag synchronization and parameter identification for a class of chaotic neural networks with stochastic perturbation, which involve both the discrete and distributed time-varying delays. By the adaptive feedback technique, several sufficient conditions have been derived to ensure the synchronization of stochastic chaotic neural networks. Moreover, all the connection weight matrices can be estimated while the lag synchronization is achieved in mean square at the same time. The corresponding simulation results are given to show the effectiveness of the proposed method.

MSC:

82C32 Neural nets applied to problems in time-dependent statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
92B20 Neural networks for/in biological studies, artificial life and related topics
60K20 Applications of Markov renewal processes (reliability, queueing networks, etc.)
90B15 Stochastic network models in operations research
34B45 Boundary value problems on graphs and networks for ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
93C10 Nonlinear systems in control theory
93B52 Feedback control
Full Text: DOI

References:

[1] Chen, G. R.; Dong, X., From Chaos to Order: Methodologies, Perspectives, and Applications (1998), World Science: World Science Singapore · Zbl 0908.93005
[2] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 821 (1990) · Zbl 0938.37019
[3] Ojalvo, J. G.; Roy, R., Phys. Rev. Lett., 86, 22, 5204 (2001)
[4] Yang, T.; Chua, L. O., IEEE Trans. Circuits Syst. I, 44, 976 (1997)
[5] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S., Phys. Rep., 366, 1 (2002) · Zbl 0995.37022
[6] Tang, Y.; Fang, J. A., Phys. Lett. A, 372, 1816 (2008) · Zbl 1220.37027
[7] D.M. Li, Z.D. Wang, J. Z, J.A. Fang, J.N. Ni, Chaos Solitons Fractals, doi:10.1016/j.chaos.2007.01.057; D.M. Li, Z.D. Wang, J. Z, J.A. Fang, J.N. Ni, Chaos Solitons Fractals, doi:10.1016/j.chaos.2007.01.057
[8] Shahverdiev, E. M.; Sivaprakasam, S.; Shore, K. A., Phys. Lett. A, 292, 320 (2002) · Zbl 0979.37022
[9] Lü, J.; Chen, G., IEEE Trans. Automat. Control, 50, 841 (2005) · Zbl 1365.93406
[10] Lü, J.; Yu, X. H.; Chen, G.; Cheng, D. Z., IEEE Trans. Circuits Syst.-I, 51, 787 (2004) · Zbl 1374.34220
[11] Yu, W. W.; Cao, J.; Lü, J., SIAM J. Appl. Dynam. Syst., 7, 108 (2008) · Zbl 1161.94011
[12] Zhou, J.; Lu, J. A.; Lü, J., IEEE Trans. Automat. Control, 51, 652 (2006) · Zbl 1366.93544
[13] Wang, X. F.; Chen, G., Int. J. Bifur. Chaos, 12, 187 (2002)
[14] Lu, J.; Cao, J., Physica A, 384, 432 (2007)
[15] Yu, W.; Cao, J., Physica A, 373, 252 (2007)
[16] Cao, J.; Li, P.; Wang, W., Phys. Lett. A, 353, 4, 318 (2006)
[17] He, W.; Cao, J., Phys. Lett. A, 372, 408 (2008) · Zbl 1217.92011
[18] Lou, X.; Bao, C., Physica A, 380, 563 (2007)
[19] Lu, W. L.; Chen, T. P., Physica D, 198, 148 (2004) · Zbl 1071.39011
[20] Lu, W. L.; Chen, T. P., IEEE Trans. Circuits Syst.-I, 51, 2491 (2004) · Zbl 1371.34118
[21] Li, P.; Cao, J. D.; Wang, Z. D., Physica A, 373, 261 (2007)
[22] Chen, G. R.; Zhou, J.; Liu, Z. R., Int. J. Bifur. Chaos, 14, 7, 2229 (2004) · Zbl 1077.37506
[23] Cheng, C. J.; Liao, T. L.; Hwang, C. C., Chaos Solitons Fractals, 24, 197 (2005) · Zbl 1060.93519
[24] Li, Z.; Chen, G., IEEE Trans. Circuits Syst., 53, 28 (2006)
[25] Sun, Y.; Cao, J., Phys. Lett. A, 364, 277 (2007) · Zbl 1203.93110
[26] Wang, K.; Teng, Z.; Jiang, H., Physica A, 387, 631 (2008)
[27] Wang, Z.; Lauria, S.; Fang, J. A.; Liu, X., Chaos Solitons Fractals, 32, 62 (2007) · Zbl 1152.34058
[28] Wang, Z.; Liu, Y.; Fraser, K.; Liu, X., Phys. Lett. A, 354, 288 (2006) · Zbl 1181.93068
[29] Wan, L.; Sun, J., Phys. Lett. A, 343, 4, 306 (2005) · Zbl 1194.37186
[30] Huang, D. B., Phys. Rev. E, 71, 037203 (2005)
[31] Huang, D. B., Phys. Rev. E, 69, 067201 (2004)
[32] Huang, D. B., Phys. Rev. E, 73, 066204 (2006) · Zbl 1244.93064
[33] Ruan, S.; Filfil, R., Physica D, 191, 323 (2004) · Zbl 1049.92004
[34] Wang, Z.; Liu, Y.; Li, M.; Liu, X., IEEE Trans. Neural Networks, 17, 814 (2006)
[35] Wang, Z.; Fang, J.a.; Liu, X., Chaos Solitons Fractals, 36, 388 (2008) · Zbl 1141.93416
[36] Wang, Z.; Shu, S.; Liu, Y.; Ho, D. W.C.; Liu, X., Chaos Solitons Fractals, 28, 793 (2006) · Zbl 1095.92001
[37] Xu, S.; Chen, T.; Lam, J., IEEE Trans. Automat. Control, 48, 900 (2003) · Zbl 1364.93816
[38] Friedman, A., Stochastic Differential Equations and Applications (1976), Academic Press: Academic Press New York · Zbl 0323.60057
[39] Mao, X., J. Math. Anal. Appl., 268, 125 (2002) · Zbl 0996.60064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.