zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. (English) Zbl 1221.93091
Summary: Based on the stability theory of fractional order systems, this paper analyses the synchronization conditions of the fractional order chaotic systems with activation feedback method. And the synchronization of commensurate order hyperchaotic Lorenz system of the base order $0.98$ is implemented based on this method. Numerical simulations show the effectiveness of this method in a class of fractional order chaotic systems.

93B52Feedback control
34H10Chaos control (ODE)
37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[2] Hilfer, R.: Applications of fractional calculus in physics, (2001) · Zbl 0998.26002
[3] Bagley, R. L.; Calico, R. A.: Fractional order state equations for the control of viscoelastically damped structures, J guidance control dyn 14, No. 2, 304-311 (1991)
[4] Koeller, R. C.: Application of fractional calculus to the theory of viscoelasticity, J appl mech 51, No. 2, 294-298 (1984) · Zbl 0544.73052 · doi:10.1115/1.3167616
[5] Koeller, R. C.: Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics, Acta mech 58, No. 3 -- 4, 251-264 (1986) · Zbl 0578.73040 · doi:10.1007/BF01176603
[6] Heaviside, O.: Electromagnetic theory, (1971) · Zbl 30.0801.03
[7] Grigorenko, I.; Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system, Phys rev lett 91, No. 3, 034101 (2003) · Zbl 1234.49040
[8] Hartley, T. T.; Lorenzo, C. F.; Qammer, H. K.: Chaos in a fractional order Chua’s system, IEEE trans CAS-I 42, No. 8, 485-490 (1995)
[9] Li, C. G.; Chen, G. R.: Chaos in the fractional order Chen system and its control, Chaos solitons fract 22, No. 3, 549-554 (2004) · Zbl 1069.37025 · doi:10.1016/j.chaos.2004.02.035
[10] Li, C. P.; Peng, G. J.: Chaos in Chen’s system with a fractional order, Chaos solitons fract 22, No. 2, 443-450 (2004) · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[11] Li, C. P.; Deng, W. H.: Chaos synchronization of fractional-order differential system, Int J mod phys B 20, No. 7, 791-803 (2006) · Zbl 1101.37025 · doi:10.1142/S0217979206033620
[12] Tavazoei, M. S.; Haeri, M.: Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET signal processing 1, No. 4, 171-181 (2007)
[13] Deng, W. H.; Li, C. P.: Chaos synchronization of the fractional Lü system, Physica A 353, 61-72 (2005)
[14] Wang, X. Y.; Song, J. M.: Synchronization of the unified chaotic system, Nonlinear anal: theory meth appl 69, No. 10, 3409-3416 (2008) · Zbl 1175.34079 · doi:10.1016/j.na.2007.09.030
[15] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, Geophys J roy astronom soc 13, 529-539 (1967)
[16] Matignon, D.: Stability results for fractional differential equations with application to control processing, Computational engineering system application 2, 963-968 (1996)
[17] Mohammad, S. T.; Mohammad, H.: A note on the stability of fractional order systems, Math comput simulat (2007) · Zbl 1209.37037
[18] Lorenz, E. N.: Deterministic nonperodic flow, J atmos sci 20, 130-141 (1963)
[19] Wang, X. Y.; Wang, M. J.: A hyperchaos generated from Lorenz system, Physica A 387, No. 14, 3751-3758 (2008)
[20] Petras, I.: A note on the fractional-order Chua’s system, Chaos solitons fract 38, No. 1, 140-147 (2008)
[21] Ramasubramanian, K.; Sriram, M. S.: A comparative study of computation of Lyapunov spectra with different algorithms, Physica D 139, No. 1, 2, 72-86 (2000) · Zbl 0947.34041 · doi:10.1016/S0167-2789(99)00234-1
[22] Wang, Y. H.; Li, C. P.: Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle?, Phys lett A 363, No. 5&6, 414-419 (2007)
[23] Li, C. P.; Deng, W. H.: Synchronization of limit sets, Mod phys lett B 21, No. 9, 551-558 (2007) · Zbl 1117.37019 · doi:10.1142/S0217984907012980