Zhang, Qunjiao; Lu, Jun-An; Zhao, Junchan Impulsive synchronization of general continuous and discrete-time complex dynamical networks. (English) Zbl 1221.93107 Commun. Nonlinear Sci. Numer. Simul. 15, No. 4, 1063-1070 (2010). Summary: We mainly investigate the impulsive synchronization of a general complex continuous and discrete-time dynamical network. Firstly, for the continuous complex networks, we give a sufficient condition to guarantee its synchronization. When the sufficient condition is not satisfied, the impulsive controllers are utilized, and some novel criteria are derived to guarantee the network synchronization in this case. What is more significant is that the similar work is extended to the discrete-time networks model. Finally, the results are, respectively, illustrated by a continuous network composed with the chaotic Chen oscillators and a discrete-time network consisting of Hénon map. All numerical simulations verify the effectiveness of the theoretical analysis. Cited in 27 Documents MSC: 93C15 Control/observation systems governed by ordinary differential equations 37N35 Dynamical systems in control 34D06 Synchronization of solutions to ordinary differential equations 34A33 Ordinary lattice differential equations Keywords:impulsive synchronization; dynamical networks; continuous; discrete-time; Chen system; hénon map PDF BibTeX XML Cite \textit{Q. Zhang} et al., Commun. Nonlinear Sci. Numer. Simul. 15, No. 4, 1063--1070 (2010; Zbl 1221.93107) Full Text: DOI References: [1] Wang, X.; Chen, G., Synchronization in small-world dynamical networks, Int. J. Birfurcat. Chaos, 12, 1, 187-192 (2002) [2] Wang, X.; Chen, G., Complex networks: small-world, scale-free and beyond, IEEE Circuits Syst. Mag., 3, 1, 6-20 (2003) [3] Wang, X.; Chen, G., Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Trans. Circuits Syst. I, 49, 54-62 (2002) · Zbl 1368.93576 [4] Luo, Albert C. J., A theory for synchronization of dynamical systems, Commun. Nonlinear Sci. Numer. Simulat., 14, 1901-1951 (2009) · Zbl 1221.37218 [5] Wu, C. W.; Chua, L. O., Synchronization in an array of linearly coupled dynamical systems, IEEE Trans. Circuits Syst. I, 42, 8, 430-447 (1995) · Zbl 0867.93042 [6] Strogatz, S. H., Exploring complex networks, Nature, 410, 268-276 (2001) · Zbl 1370.90052 [7] Hong, H.; Choi, M. Y.; Kim, B. J., Synchronization on small-world networks, Phys. Rev. E, 65, 5, 26-139 (2002) [8] Lü, J.; Yu, X.; Chen, G., Chaos synchronization of a general complex dynamical networks, Physica A, 334, 281-302 (2004) [9] Li, C.; Chen, G., Synchronization in general complex dynamical networks with coupling delays, Physica A, 343, 263-278 (2004) [10] Li, C.; Xu, H.; Liao, X.; Yu, J., Synchronization in small-world oscillator networks with coupling delays, Physica A, 335, 359-364 (2004) [11] Lia, C. P.; Suna, W. G.; Kurths, J., Synchronization of complex dynamical networks with time delays, Physica A, 361, 24-34 (2006) [12] Gao, H. J.; Lam, J.; Chen, G. R., New criteria for synchronization stability of general complex dynamical networks with coupling delays, Phys. Lett. A, 360, 263-273 (2006) · Zbl 1236.34069 [13] Zhou, J.; Lu, J.; Lü, J., Adaptive synchronization of an uncertain complex dynamical network, IEEE Trans. Auto. Control, 51, 4, 652-656 (2006) · Zbl 1366.93544 [14] Wang, X. F.; Chen, G., Pinning control of scale-free dynamical networks, Physica A, 310, 521-531 (2002) · Zbl 0995.90008 [15] Li, X.; Wang, X. F.; Chen, G., Pinning a complex dynamical network to its equilibrium, IEEE Trans. Circuits Syst. I, 51, 10, 2074-2087 (2004) · Zbl 1374.94915 [16] Liu, Z. X.; Chen, Z. Q.; Yuan, Z. Z., Pinning control of weighted general complex dynamical networks with time delay, Physica A, 375, 345-354 (2007) [17] Xiang, L. Y.; Liu, Z. X.; Chen, Z. Q.; Chen, F.; Yuan, Z. Z., Pinning control of complex dynamical networks with general topology, Physica A, 379, 298-306 (2007) [18] Liu, B.; Liu, X. Z.; Chen, G. R.; Wang, H. Y., Robust impulsive synchronization of uncertain dynamical networks, IEEE Trans. Circuits Syst. I, 52, 7, 1431-1440 (2005) · Zbl 1374.82016 [19] Yang, T.; Chua, L. O., Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication, IEEE Trans. Circuits Syst. I, 44, 10, 976-988 (1997) [20] khadra, A.; Liu, X. Z.; Shen, X., Application of impulsive synchronization to communication security, IEEE Trans. Circuits Syst. I, 50, 3, 341-351 (2003) · Zbl 1368.94105 [22] Li, Z. G.; Wen, C. Y.; Soh, Y. C., Analysis and design of impulsive control systems, IEEE Trans. Auto. Control, 46, 894-899 (2001) · Zbl 1001.93068 [23] Itoh, M.; Yang, T.; Chua, L. O., Experimental study of impulsive synchronization of chaotic and hyperchaotic circuits, Int. J. Birfurcat. Chaos, 11, 2, 1393-1424 (2001) · Zbl 0963.34029 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.