zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems. (English) Zbl 1221.93157
Summary: A novel Adaptive Fuzzy Sliding Mode Control (AFSMC) methodology is proposed based on the integration of Sliding Mode Control (SMC) and Adaptive Fuzzy Control (AFC). Making use of the SMC design framework, we propose two fuzzy systems to be used as reaching and equivalent parts of the SMC. In this way, we make use of the fuzzy logic to handle uncertainty/disturbance in the design of the equivalent part and provide a chattering free control for the design of the reaching part. To construct the equivalent control law, an adaptive fuzzy inference engine is used to approximate the unknown parts of the system. To get rid of the chattering, a fuzzy logic model is assigned for reaching control law, which acting like the saturation function technique. The main advantage of our proposed methodology is that the structure of the system is unknown and no knowledge of the bounds of parameters, uncertainties and external disturbance are required in advance. Using Lyapunov stability theory and Barbalat’s lemma, the closed-loop system is proved to be stable and convergence properties of the system is assured. Simulation examples are presented to verify the effectiveness of the method. Results are compared with some other methods proposed in the past research.

93C42Fuzzy control systems
93B12Variable structure systems
Full Text: DOI
[1] Emelyanov, S. V.: Variable structure control systems, (1967) · Zbl 0217.58102
[2] Utkin, V. I.: Sliding modes and their applications in variable structure systems, (1974) · Zbl 0365.90112
[3] Itkis, U.: Control systems of variable structure systems, (1976) · Zbl 0256.93033
[4] Utkin, V. I.: Variable structure systems with sliding modes, IEEE trans automat contr 22, 212-222 (1977) · Zbl 0382.93036 · doi:10.1109/TAC.1977.1101446
[5] Slotine, J. E.; Li, W.: Applied nonlinear control, (1991) · Zbl 0753.93036
[6] Bandyopadhyay, B.; Janardhanan, S.: Discrete-time sliding mode control, (2006) · Zbl 1132.93322
[7] Zhang, D. Q.; Guo, G. X.: Discrete-time sliding mode proximate time optimal seek control of hard disk drives, IEEE proc-control theory appl 147, 440-446 (2000)
[8] Zhang, Y.; Changxi, J.; Utkin, V. I.: Sensorless sliding mode control of induction motors, IEEE trans ind electron 47, 1286-1297 (2000)
[9] Liu, T. S.; Lee, W. S.: A repetitive learning method based on sliding mode for robot control, IEEE trans ASME 22, 40-48 (2000)
[10] Jafarov, E. M.; Tasaltin, R.: Robust sliding-mode control for the uncertain MIMO aircraft model F-18, IEEE trans aerospace electron syst 36, 1127-1141 (2000)
[11] Salamci, M.; Ozgoren, M. K.: Sliding mode control with optimal sliding surfaces for missile autopilot design, J guid control dynam 23, 719-727 (2000)
[12] Slotine, J. J.; Sastry, S. S.: Tracking control of non-linear systems using sliding surfaces, with application to a robot arm, Int J control 38, No. 2, 465-492 (1983) · Zbl 0519.93036 · doi:10.1080/00207178308933088
[13] Young, K. D.; Utkin, V. I.; Ozguner, U.: A control engineer’s guide to sliding mode control, IEEE trans contr syst technol 7, No. 3 (1999)
[14] Hung, J. Y.; Gao, W.; Hung, J. -C.: Variable structure control: a survey, IEEE trans ind electron 40, 2-22 (1993)
[15] Baik IC, Kim KH, Kim HS, Moon GW, Youn MJ. Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding control with sliding load torque observer. In: IEEE PESC’96 Record, vol. 2; 1996. p. 1242 -- 47.
[16] Chern, T. L.; Wu, Y. C.: Design of brushless DC position servo systems using integral variable structure approach, IEE proc electron power appl 140, 27-34 (1993)
[17] Lee JH, Ko JS, Chun SK, Lee JJ, Youn MJ. Design of continuous sliding mode controller for BLDDM with prescribed tracking performance. In: Conference Record, IEEE PESC’92; 1992. p. 770 -- 75.
[18] Hwang, G. C.; Lin, S. C.: A stability approach to fuzzy control design for nonlinear systems, Fuzzy set syst 48, 79-287 (1992) · Zbl 0850.93449 · doi:10.1016/0165-0114(92)90343-3
[19] Ishingame, A.; Furukawa, T.; Kawamoto, S.; Taniguchi, T.: Sliding mode controller design based on fuzzy inference for nonlinear systems, IEEE trans ind electron 40, 64-70 (1993)
[20] , Fuzzy control systems (1994) · Zbl 0875.93250
[21] Kim, S. W.; Lee, J. -J.: Design of a fuzzy controller with fuzzy sliding surface, Fuzzy set syst 71, 359-367 (1995)
[22] Kung C-C, Liao CC. Fuzzy sliding mode control design for tracking control of nonlinear system. In: Proc of the American control conference, Baltimore, MD; 1994. p. 180 -- 84.
[23] Kung, C. -C.; Lin, S. -C.: Fuzzy controller design: a sliding mode approach, Fuzzy reasoning in information, decision and control system, 277-306 (1994) · Zbl 0862.93040
[24] Lee, C. C.: Fuzzy logic in control system: fuzzy logic controller part I & II, IEEE trans syst man cybernet 20, 404-435 (1990) · Zbl 0707.93036
[25] Li THS, Tsai CY. Parallel fuzzy sliding mode control of the cart-pole system. In: Proc of the IEEE IECON’95, Orlando, USA; 1995. p. 1468 -- 73.
[26] Mamdani, H.: Applications of fuzzy algorithms for simple dynamic plants, Proc IEE 121, 1585-1588 (1974)
[27] Palm, R.: Robust control by fuzzy sliding mode, Automatica 30, 1429-1437 (1994) · Zbl 0925.93501 · doi:10.1016/0005-1098(94)90008-6
[28] Qin, S. J.; Borders, G.: A multiregion fuzzy logic controller for nonlinear process control, IEEE trans fuzzy syst 2, 74-81 (1994)
[29] Shao, S.: Fuzzy self-organizing controller and its application for dynamic processes, Fuzzy set syst 26, 151-164 (1988)
[30] Suyitno; Fujikawa, J.; Kobayashi, H.; Dote, Y.: Variable structured robust controller by fuzzy logic for servomotors, IEEE trans ind electron 40, 80-88 (1993)
[31] Ting, J. -S.; Li, T. -H.S.; Kung, F. -C.: An approach to systematic design of the fuzzy control system, Fuzzy set syst 27, 151-166 (1996)
[32] Van Der Waal, A. J.: Application of fuzzy logic control in industry, Fuzzy set syst 74, 33-41 (1995)
[33] Wang, L. -X.: Stable adaptive fuzzy control of nonlinear systems, IEEE trans fuzzy syst 1, 146-155 (1993)
[34] Lin, W. -S.; Chen, C. -S.: Robust adaptive sliding mode control using fuzzy modeling for a class of uncertain MIMO nonlinear systems, IEE proc contr theory appl 149, 193-201 (2002)
[35] Su, J. P.; Chen, T. M.; Wang, C. C.: Adaptive fuzzy sliding mode control with GA-based reaching laws, Fuzzy set syst 120, 145-158 (2001) · Zbl 0974.93542 · doi:10.1016/S0165-0114(99)00107-4
[36] Tao, C. W.; Chan, M. -L.; Lee, T. -T.: Adaptive fuzzy sliding mode controller for linear systems with mismatched time-varying uncertainties, IEEE trans syst man cybernet --- part B 33, 283-293 (2003)
[37] Mamdani, E. H.; Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller, Int J man -- machine stud 7, No. 1, 1-13 (1975) · Zbl 0301.68076 · doi:10.1016/S0020-7373(75)80002-2
[38] Zadeh, L. A.: Fuzzy set, Inform control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[39] Yu, X.; Man, Z.; Wu, B.: Design of fuzzy sliding mode control systems, Fuzzy set syst 95, 295-306 (1998) · Zbl 0948.93513 · doi:10.1016/S0165-0114(96)00278-3
[40] Shih, M. C.; Lu, C. S.: Fuzzy sliding mode position control of a ball screw driven by pneumatic servomotor, Mechtronics 5, 421-431 (1994)
[41] Ting C, Li TS, Kung F. Fuzzy sliding mode control of nonlinear system. In: Proc of the 3rd IEEE conference on Fuzzy systems, IEEE world congress on computational intelligence, vol. 3; 1996. p. 1620 -- 25.
[42] Su, C. Y.; Stepanenko, Y.: Adaptive control of a class of nonlinear systems with fuzzy logic, IEEE trans fuzzy syst 2, 285-294 (1994)
[43] Yoo, B.; Ham, W.: Adaptive fuzzy sliding mode control of nonlinear system, IEEE trans fuzzy syst 6, 315-321 (1998)
[44] Wang, J.; Rad, A. B.; Chan, P. T.: Indirect adaptive fuzzy sliding mode control: part I-fuzzy switching, Fuzzy set syst 122, No. August, 21-30 (2001) · Zbl 0981.93040 · doi:10.1016/S0165-0114(99)00179-7
[45] Kung, C. -C.; Chen, T. -H.: Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical systems, Fuzzy set syst 155, 292-308 (2005) · Zbl 1140.93411 · doi:10.1016/j.fss.2005.04.016
[46] Yau, H. -T.; Chen, C. -L.: Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems, Chaos solitons fract 30, 709-718 (2006)
[47] Kim, S. W.; Lee, J. J.: Design of a fuzzy controller with fuzzy sliding surface, Fuzzy set syst 71, No. 3, 359-367 (1995)
[48] Lee, H.; Kim, E.; Kang, H. J.; Park, M.: A new sliding-mode control with fuzzy boundary layer, Fuzzy set syst 120, No. 1, 135-143 (2001) · Zbl 0988.93045 · doi:10.1016/S0165-0114(99)00072-X
[49] Berstecher, R. G.; Palm, R.; Unbehauen, H. D.: An adaptive fuzzy sliding-mode controller, IEEE trans ind electron 48, 18-31 (2001) · Zbl 0915.93034
[50] Isidori, A.: Nonlinear control systems, (1995) · Zbl 0878.93001
[51] Wang, C. H.; Liu, H. L.; Lin, T. C.: Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems, IEEE trans fuzzy syst 10, 39-49 (2002)
[52] Wang, L. X.: A course in fuzzy systems and control, (1997) · Zbl 0910.93002
[53] Roopaei M, Zolghadri Jahromi M. Synchronization of two different chaotic systems using novel adaptive fuzzy sliding mode control. Chaos 2008;18:033133. · Zbl 1309.34075