zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust stability of discrete-time LPD neural networks with time-varying delay. (English) Zbl 1221.93216
Summary: This paper presents a new approach to the robust stability of discrete-time LPD neural networks with time-varying delay and with normed bounded uncertainties as well as polytopic type uncertainties. Based on Lyapunov stability theory and the S-procedure, we derive robust stability criteria in terms of linear matrix inequalities (LMI) which are solvable by several available algorithms. We show that some of the existing results on robust stability of neural networks are corollaries of main results of this paper. Numerical examples are given to illustrate the effectiveness of our theoretical results.

93D09Robust stability of control systems
34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
LMI toolbox
Full Text: DOI
[1] Bengea S, DeCarlo R, Corless M, Rizzoni G. A polytopic system approach for the hybrid control of a diesel engine using VGT/EGR, ECE technical reports, Purdue University, IM; 2002. p. 1 -- 61.
[2] Botto, M. A.; Wams, B.; Boom, T.; Costa, J.: Robust stability of feedback linearised systems modelled with neural networks: dealing with uncertainty, Eng appl artif intell 13, 659-670 (2000)
[3] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, (1994) · Zbl 0816.93004
[4] Cauët, S.; Rambault, L.; Bachelier, O.; Mehdi, D.: Parameter-dependent Lyapunov functions applied to analysis of induction motor stability, Contr eng pract 10, 337-345 (2002)
[5] Chua, L. O.; Yang, L.: Cellular neural networks: theory, IEEE trans circ syst 35, 1257-1272 (1998) · Zbl 0663.94022 · doi:10.1109/31.7600
[6] Gahinet, P.; Nemirovsky, A.; Laub, A. J.; Chilali, M.: LMI control toolbox: for use with Matlab, (1995)
[7] Gao, H.; Lam, J.; Wang, C.: Mixed H2/H$\infty $ filtering for continuous-time polytopic systems: a parameter-dependent approach, Circ syst signal process 24, 689-702 (2005) · Zbl 1102.94033 · doi:10.1007/s00034-005-0612-y
[8] He, Y.; Wang, Q. G.; Wu, M.: LMI-based stability criteria for neural networks with multiple time-varying delays, Physica D 212, 126-136 (2005) · Zbl 1097.34054 · doi:10.1016/j.physd.2005.09.013
[9] He, Y.; Wang, Q. G.; Zang, W. X.: Global robust stability for delayed neural networks with polytopic type uncertainty, Chaos solitons fractals 26, 1349-1354 (2005) · Zbl 1083.34535 · doi:10.1016/j.chaos.2005.04.005
[10] Khalil, H. K.: Nonlinear system, (1986)
[11] Liu, Y.; Wang, Z.; Serrano, A.; Liu, X.: Discrete-time recurrent neural networks with time-varying delays: exponential stability analysis, Phys lett A 362, 480-488 (2007)
[12] Liu, Y.; Wang, Z.; Liu, X.: Robust stability of discrete-time stochastic neural networks with time-varying delays, Neurocomputing 71, 823-833 (2008)
[13] Phat, V. N.: Robust stability and stabilizability of uncertain linear hybrid systems with state delays, IEEE trans circ syst 52, 94-98 (2005)
[14] Roska, T.; Chua, L. O.: Cellular neural networks with nonlinear and delay-type template, Int J circ theor appl 20, 469-481 (1992) · Zbl 0775.92011 · doi:10.1002/cta.4490200504
[15] Singh, V.: New global robust stability results for delayed cellular neural networks based on norm-bounded uncertainties, Chaos solitons fractals 30, 1165-1171 (2005) · Zbl 1142.34353 · doi:10.1016/j.chaos.2005.08.183
[16] Zhang, H.; Liao, X.: LMI-base robust stability analysis of neural networks with time-varying delay, Neurocomputing 67, 306-312 (2005)