zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-range-dependent synchronization criterion for Lur’e systems with delay feedback control. (English) Zbl 1221.93224
Summary: A master--slave synchronization scheme is investigated by using feedback control mechanism with time-varying delay. The time-delay is assumed to be a time-varying continuous function belonging to a given range. By constructing a novel Lyapunov--Krasovskii functional, which includes the information of the range, new delay-range-dependent synchronization criterion is established in term of LMI. It is shown that the new criterion improve some of the previous results in the earlier references. Simulation example is given to show the effectiveness and less conservatism of the proposed criterion.

93D15Stabilization of systems by feedback
Full Text: DOI
[1] Chen, G.; Dong, X.: From chaos to order perspectives, methodologies, and applications, (1998) · Zbl 0908.93005
[2] Yalcin, M. E.; Suykens, J. A. K.; Vandewalle, J.: Master -- slave synchronization of lure systems with time-delay, Int J bifur chaos 11, 1707-1722 (2001)
[3] Pecora, L. M.: Synchronization in chaotic systems, Phys rev lett 64, 821-824 (1991) · Zbl 0938.37019
[4] Xie, L.; Teo, K. L.; Zhao, Y.: Chaos synchronization for continuous chaotic systems by inertial manifold approach, Chaos soliton fract 32, 234-245 (2007) · Zbl 1138.93048 · doi:10.1016/j.chaos.2005.10.105
[5] Yu, Y.; Zhang, S.: Global synchronization of three coupled chaotic systems with ring connection, Chaos soliton fract 24, 1233-1242 (2005) · Zbl 1081.37020 · doi:10.1016/j.chaos.2004.09.112
[6] Liao, X.; Chen, G.: Chaos synchronization of general lure systems via time-delay feedback control, Int J bifur chaos 13, 207-213 (2003) · Zbl 1129.93509 · doi:10.1142/S0218127403006455
[7] Cao, J.; Li, H. X.; Ho, D. W. C.: Synchronization criteria of lure systems with time-delay feedback control, Chaos soliton fract 23, 1285-1298 (2005) · Zbl 1086.93050 · doi:10.1016/j.chaos.2004.06.025
[8] Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems, (2003) · Zbl 1039.34067
[9] Yan, J.; Li, C.: On chaos synchronization of fractional differential equations, Chaos soliton fract 32, 725-735 (2007) · Zbl 1132.37308 · doi:10.1016/j.chaos.2005.11.062
[10] Li, D. M.; Wang, Z. D.; Zhou, J.; Fang, J. A.; Ni, J. J.: A note on chaotic synchronization of time-delay secure communication systems, Chaos soliton fract 38, 1217-1224 (2008) · Zbl 1152.93449 · doi:10.1016/j.chaos.2007.01.057
[11] Zhang, X. M.; Wu, M.; She, J. H.; He, Y.: Delay-dependent stabilization of linear systems with time-varying state and input delays, Automatica 41, 1405-1412 (2005) · Zbl 1093.93024 · doi:10.1016/j.automatica.2005.03.009
[12] He, Y.; Wang, Q. G.; Wu, M.: LMI-based stability criteria for neural networks with multiple time-varying delays, Physica D 212, 126-136 (2005) · Zbl 1097.34054 · doi:10.1016/j.physd.2005.09.013
[13] He, Y.; Liu, G. P.; Rees, D.: New delay-dependent stability criteria for neural networks with time-varying delay, IEEE trans neural network 18, 310-314 (2007)
[14] He, Y.; Wen, G. L.; Wang, Q. G.: Delay-dependent synchronization criterion for Lur’e systems with delay feedback control, Int J bifur chaos 16, 3087-3091 (2006) · Zbl 1139.93349 · doi:10.1142/S0218127406016677
[15] Xiang, J.; Li, Y. J.; Wei, W.: An improved condition for master -- slave synchronization of lure systems with time-delay, Phys lett A 362, 154-158 (2007)
[16] Han, Q. L.: New delay-dependent synchronization criteria for lure systems using time delay feedback control, Phys lett A 360, 563-569 (2007) · Zbl 1236.93072
[17] Li, T.; Guo, L.; Sun, C. Y.; Lin, C.: Further results on delay-dependent stability criteria of neural networks with time-varying delays, IEEE trans neural network 19, 426-430 (2008)
[18] Li, T.; Guo, L.; Sun, C. Y.: Robust stability for neural networks with time-varying delays and linear fractional uncertainties, Neurocomputing 71, 421-427 (2007)