zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. (English) Zbl 1221.93230
Summary: We present the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems is formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton--Jacobi--Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rössler system and synchronization of the hyperchaotic Rössler system.

93D15Stabilization of systems by feedback
37D45Strange attractors, chaotic dynamics
34H10Chaos control (ODE)
49N10Linear-quadratic optimal control problems
Full Text: DOI
[1] Anderson, B. D. O.; Moor, J. B.: Optimal control: linear quadratic methods, (1990) · Zbl 0751.49013
[2] Bryson, A. E.; Ho, Y.: Applied optimal control, (1975)
[3] Bewley, T. R.: Linear control and estimation of nonlinear chaotic convection: harnessing the butterfly effect, Phys fluids 11, No. 5, 1169-1186 (1999) · Zbl 1147.76326 · doi:10.1063/1.869986
[4] Jiang, G. P.; Chen, G.; Tang, W. K. S.: A new criterion for chaos synchronization using linear state feedback control, Int J bifurcat chaos 13, No. 8, 2343-2351 (2003) · Zbl 1064.37515 · doi:10.1142/S0218127403008004
[5] Kapitaniak, T.: Controlling chaos, (1996) · Zbl 0883.58021
[6] Nijmeijer, H.: A dynamical control view on synchronization, Physica D 154, 219-228 (2001) · Zbl 0981.34053 · doi:10.1016/S0167-2789(01)00251-2
[7] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos, Phys rev lett 64, 1196-1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[8] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[9] Rafikov, M.; Balthazar, J. M.: On a optimal control design for Rössler system, Phys lett A 333, 241-245 (2004) · Zbl 1123.49300 · doi:10.1016/j.physleta.2004.10.032
[10] Rafikov M, Balthazar JM. Optimal linear and nonlinear control design for chaotic systems. In: Proceedings of ASME international design engineering technical conferences and computers and information in engineering conference, Long Beach, CA, USA, 24 -- 28 September 2005.
[11] Rössler, O. E.: An equation for continuous chaos, Phys lett A 57, 397-398 (1976)
[12] Rössler, O. E.: An equation for hyperchaos, Phys lett A 71, 155-157 (1979) · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[13] Sinha, S. C.; Henrichs, J. T.; Ravindra, B. A.: A general approach in the design of active controllers for nonlinear systems exhibiting chaos, Int J bifurcat chaos 10, No. 1, 165-178 (2000) · Zbl 1090.37528 · doi:10.1142/S0218127400000104