×

Adaptive synchronization of uncertain coupled stochastic complex networks. (English) Zbl 1221.93268

Summary: In this paper, the problem of adaptive synchronization of uncertain coupled complex networks is investigated. Some controllers and adaptive laws are designed to ensure achieving synchronization of a general complex network model. In particular, synchronization of coupled stochastic networks subject to random perturbations is studied, with a referenced node introduced as the target node for synchronization. An example is simulated on delayed neural networks coupled in a small-world network topology, which demonstrates the feasibility and effectiveness of the proposed adaptive control method.

MSC:

93E15 Stochastic stability in control theory
93C40 Adaptive control/observation systems
93A15 Large-scale systems
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Strogatz, Exploring complex networks, Nature 410 pp 268– (2001) · Zbl 1370.90052 · doi:10.1038/35065725
[2] Watts, Collective dynamics of ’small-world’ networks, Nature 393 pp 440– (1998) · Zbl 1368.05139 · doi:10.1038/30918
[3] Yu, Global synchronization of linearly hybrid coupled networks with time-varying delay, SIAM J. Appl. Dyn. Syst. 7 (1) pp 108– (2008) · Zbl 1161.94011 · doi:10.1137/070679090
[4] Yu, Local synchronization of a complex network model, IEEE Trans. Syst., Man, Cybern.-Part B 39 (1) pp 230– (2009) · doi:10.1109/TSMCB.2008.2004964
[5] Zhou, Synchronizing delayed neural networks by pinning control, Chaos 18 pp 043111– (2008) · Zbl 1309.92018 · doi:10.1063/1.2995852
[6] Yu, On pinning synchronization of complex dynamical networks, Automatica 45 (2) pp 429– (2009) · Zbl 1158.93308 · doi:10.1016/j.automatica.2008.07.016
[7] Barabási, Emergence of scaling in random networks, Science 286 pp 509– (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[8] Wang, Global synchronization for delayed complex networks with randomly occurred nonlinearities and multiple stochastic disturbances, J. Phys. A: Math. Theor. 42 (13) pp 135101– (2009) · Zbl 1159.90013 · doi:10.1088/1751-8113/42/13/135101
[9] Wang, Synchronization in scale-free dynamical networks; robustness and fragility, IEEE Trans. Circuits Syst. I 49 pp 54– (2002) · Zbl 1368.93576 · doi:10.1109/81.974874
[10] Wang, Synchronization in small-world dynamical networks, Int. J. Bifurcation Chaos 12 pp 187– (2002) · doi:10.1142/S0218127402004292
[11] Cao, A new complex network model and convergence dynamics for reputation computation in virtual organizations, Phys. Lett. A 356 (6) pp 414– (2006) · Zbl 1160.91403 · doi:10.1016/j.physleta.2006.04.005
[12] Lu, Synchronization of coupled connected neural networks with delays, IEEE Trans. Circuits Syst. I 51 (12) pp 2491– (2004) · Zbl 1371.34118 · doi:10.1109/TCSI.2004.838308
[13] Cao, Global synchronization in arrays of delayed neural networks with constant and delayed coupling, Phys. Lett. A 353 pp 318– (2006) · doi:10.1016/j.physleta.2005.12.092
[14] Lü, Chaos synchronization of general complex dynamical networks, Physica A 334 pp 281– (2004) · doi:10.1016/j.physa.2003.10.052
[15] Zhou, Synchronization in general complex delayed dynamical networks, IEEE Trans. Circuits Syst. I 53 (3) pp 733– (2006) · Zbl 1374.37056 · doi:10.1109/TCSI.2005.859050
[16] Li, Robust adaptive synchronization of uncertain dynamical networks, Phys. Lett. A 324 pp 166– (2004) · Zbl 1123.93316 · doi:10.1016/j.physleta.2004.02.058
[17] Yu, Synchronization control of stochastic delayed neural networks, Physica A 373 pp 252– (2007) · doi:10.1016/j.physa.2006.04.105
[18] Yu, Robust control of uncertain stochastic recurrent neural networks with time-varying delay, Neural Proc. Lett. 26 (2) pp 101– (2007) · doi:10.1007/s11063-007-9045-x
[19] Yu, Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks, Chaos 16 pp 023119– (2006) · Zbl 1146.93371 · doi:10.1063/1.2204747
[20] Yu, Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification, Physica A 375 (2) pp 467– (2007) · doi:10.1016/j.physa.2006.09.020
[21] Yu, Robust adaptive control of unknown modified Cohen-Grossberg neural networks with delay, IEEE Trans. Circuits Syst. II 54 (6) pp 502– (2007) · doi:10.1109/TCSII.2007.894427
[22] Yu, Estimating uncertain delayed genetic regulatory networks: an adaptive filtering approach, IEEE Trans. Autom. Control 54 (4) pp 892– (2009) · Zbl 1367.93709 · doi:10.1109/TAC.2008.2010972
[23] Huang, Simple adaptive-feedback controller for identical chaos synchronization, Phys. Rev. E. 71 pp 037203– (2005) · doi:10.1103/PhysRevE.71.037203
[24] Cao, Adaptive synchronization of neural networks with or without time-varying delays, Chaos 16 pp 013133– (2006) · Zbl 1144.37331 · doi:10.1063/1.2178448
[25] Yu, Parameter identification of dynamical systems from time series, Phys. Rev. E 75 (6) pp 067201– (2007) · doi:10.1103/PhysRevE.75.067201
[26] Wang, A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances, Phys. Lett. A 372 (39) pp 6066– (2008) · Zbl 1223.90013 · doi:10.1016/j.physleta.2008.08.008
[27] Liang, State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: the discrete-time case, IEEE Trans. Neural Netw. 20 (5) pp 781– (2009) · doi:10.1109/TNN.2009.2013240
[28] Lin, Complete synchronization of the noise-perturbed Chuas circuits, Chaos 15 pp 023705– (2005) · doi:10.1063/1.1938627
[29] Sun, Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation, Phys. Lett. A 364 pp 277– (2007) · Zbl 1203.93110 · doi:10.1016/j.physleta.2006.12.019
[30] LaSalle, The Stability of Dynamical Systems (1976) · doi:10.1137/1.9781611970432
[31] Hale, Introduction to Functional Differential Equations (1993) · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[32] Kolmanovskii, Introduction to the Theory and Applications of Functional Differential Equations (1999) · Zbl 0917.34001 · doi:10.1007/978-94-017-1965-0
[33] Schuss, Theory and Application of Stochastic Differential Equations (1980) · Zbl 0439.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.