zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of the unified chaotic system and application in secure communication. (English) Zbl 1221.94047
Summary: We study the synchronization of the unified chaotic system via optimal linear feedback control and the potential use of chaos in cryptography, through the presentation of a chaos-based algorithm for encryption.

MSC:
94A60Cryptography
34C15Nonlinear oscillations, coupled oscillators (ODE)
34D20Stability of ODE
37D45Strange attractors, chaotic dynamics
37N99Applications of dynamical systems
93D15Stabilization of systems by feedback
WorldCat.org
Full Text: DOI
References:
[1] Alvarez, G.; Li, S.: Breaking network security based on synchronized, Comput commun 27, 1679-1681 (2004)
[2] Alvarez, G.; Li, S.; Montoya, F.; Pastor, G.; Romera, M.: Breaking projective chaos synchronization secure communication using filtering and generalized synchronization, Chaos, solitons fractals 24, 775-783 (2004) · Zbl 1068.94002 · doi:10.1016/j.chaos.2004.09.038
[3] Alvarez, G.; Li, S.; Montoya, F.; Pastor, G.; Romera, M.: Breaking a secure communication scheme based on the phase synchronization of chaotic systems, Chaos 14, 274-278 (2004)
[4] Alvarez, G.; Li, S.: Some basic requirements for chaos-based cryptosystems, Int J bifurc chaos appl sci eng 16, No. 8, 2129-2152 (2006) · Zbl 1192.94088 · doi:10.1142/S0218127406015970
[5] Cherrier, E.; Boutayeb, M.; Ragot, J.: Observer-based synchronization and input recovery for a class of chaotic models, IEEE trans circ syst -- part I 53, 1977-1988 (2006)
[6] Cuomo, K. M.; Oppenheim, A. V.: Circuit implementation of synchronized chaos with applications to communications, Phys rev lett 71, 65-68 (1993)
[7] Elabbasy, E. M.; Agiza, H. N.; El-Dessoky, M. M.: Global chaos synchronization for four scroll attractor by nonlinear control, Sci res essay 1, No. 3, 65-71 (2006)
[8] Emadzadeh AA, Haeri M. Global Synchronization of two different chaotic systems via nonlinear control. In: Proceedings of the ICCAS, Gyeonggi-Do, Korea; 2005.
[9] Galias Z. Study of synchronization of linearly coupled hyperchaotic systems. In: Proceedings of the European conference on circuit theory and design, vol. 1; 1997. p. 296 -- 301.
[10] Garfinkel, S.; Spafford, G.: Practical unix and Internet security, (1996)
[11] Ghosh, D.; Chowdhury, A. R.; Saha, P.: On the various kinds of synchronization in delayed Duffing -- van der Pol system, Commun nonlinear sci numer simulat 13, 790-803 (2008) · Zbl 1221.34196 · doi:10.1016/j.cnsns.2006.07.001
[12] Ghosh, D.; Banerjee, S.; Chowdhury, A. R.: Synchronization between variable time-delayed systems and cryptography, Euro phys lett 80, 30006-30012 (2007)
[13] Grassi G, Mascolo S. Design of nonlinear observers for hyperchaos synchronization using a scalar signal. In: Proceedings of the IEEE, vol. 3; 1998. p. 283 -- 6.
[14] Grassi, G.; Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal, IEEE trans circ syst I -- fundam theor appl 44, No. 10, 1011-1014 (1997)
[15] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos, Phys rev lett 64, 1196-1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[16] Grzybowski JMV, Rafikov M. Sincronização do sistema caótico unificado via controle ótimo linear feedback com aplicação em comunicação. In: Proceedings of the XXX CNMAC, Florianópolis, Brazil; 2007.
[17] Harb AM, Ahmad WM. Chaotic systems synchronization in secure communication systems. In: Proceedings of the 2006 World congress in computer science computer engineering, and applied computing, Las Vegas; 2006.
[18] Hwang, C. C.; Chow, H. Y.; Wang, Y. K.: A new feedback control of a modified Chua’s circuit system, Physica D 92, 95-100 (1996) · Zbl 0925.93366 · doi:10.1016/0167-2789(95)00276-6
[19] Jiang, G. P.; Chen, G.; Tang, W. K. S.: A new criterion for chaos synchronization using linear state feedback control, Int J bifurc chaos 13, No. 8, 2343-2351 (2003) · Zbl 1064.37515 · doi:10.1142/S0218127403008004
[20] Kocarev, L.; Parlitz, U.: General approach for chaotic synchronization with applications to communications, Phys rev lett 74, No. 25, 5028-5031 (1995)
[21] Li, D.; Lu, J.; Wu, X.: Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems, Chaos, solitons fractals 23, 79-85 (2005) · Zbl 1063.37030 · doi:10.1016/j.chaos.2004.03.027
[22] Lu, J.; Wu, X.; Han, X.; Lü, J.: Adaptive feedback synchronization of a unified chaotic system, Phys lett A 329, 327-333 (2004) · Zbl 1209.93119 · doi:10.1016/j.physleta.2004.07.024
[23] Lu, J.; Wu, X.; Lü, J.: Synchronization of a unified chaotic system and the application in secure communication, Phys lett A 305, 365-370 (2002) · Zbl 1005.37012 · doi:10.1016/S0375-9601(02)01497-4
[24] Mancilla, D.; Hernandez, C.: A note on chaos-based communication schemes, Rev mex fís 51, No. 3, 265-269 (2005)
[25] Mascolo S. Backstepping design for controlling Lorenz chaos. In: Proceedings of the 36th conference on decision and control, San Diego, CA, USA; 1997.
[26] Min, L.; Jing, J.: A new theorem to synchronization of unified chaotic systems via adaptive control, Chaos, solitons fractals 24, No. 5, 1363-1371 (2004)
[27] Pecora, L.; Carroll, T.: Synchronization in chaotic systems, Phys rev lett 64, No. 8, 821-824 (1990) · Zbl 0938.37019
[28] Pogromsky, A.; Nijmeijer, H.: Observer-based robust synchronization of dynamical systems, Int J bifurc chaos 8, No. 11, 2243-2254 (1998) · Zbl 1140.93468 · doi:10.1142/S0218127498001832
[29] Rafikov, M.; Balthazar, J. M.: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control, Commun nonlinear sci numer simulat 13, 1246-1255 (2008) · Zbl 1221.93230 · doi:10.1016/j.cnsns.2006.12.011
[30] Sobhy MI, Shehata AR. Chaotic algorithm for data encryption. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, vol. 1; 2001. p. i-xcii.
[31] Sobhy MI, Shehata AR. Methods of attacking chaotic encryption and countermeasures. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, vol. 2; 2001. p. 1001 -- 4.
[32] Tian, L.; Xu, J.; Sun, M.: Chaos synchronization of the energy resource chaotic system with active control, Int J nonlinear sci 3, 228-234 (2001)
[33] Wang, C.; Ge, S. S.: Adaptive backstepping control of uncertain Lorenz system, Int J bifurc chaos 11, No. 4, 1115-1119 (2001) · Zbl 1090.93536 · doi:10.1142/S0218127401002560
[34] Wong, K. W.; Kwok, B. S. H.; Law, W. S.: A fast image encryption scheme based on chaotic standard map, Phys lett A 298, 238-242 (2002) · Zbl 1220.94044
[35] Yang, T.; Yang, C. M.; Yang, L. B.: A detailed study of adaptive control of chaotic systems with unknown parameters, Dyn contr 8, 255-267 (1998) · Zbl 0921.93025 · doi:10.1023/A:1008258403620
[36] Yassen, M. T.: Chaos synchronization between two different chaotic systems using active control, Chaos, solitons fractals 23, 131-140 (2005) · Zbl 1091.93520 · doi:10.1016/j.chaos.2004.03.038