zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy hypervector spaces based on fuzzy singletons. (English) Zbl 1222.03057
Summary: We introduce and study fuzzy hypervector spaces based on fuzzy singletons. In this regard, by considering the notion of fuzzy singletons, we characterize a fuzzy hypervector space fuzzily spanned by a fuzzy subset. Then we use these results to introduce the concept of fuzzy freeness of a fuzzy subset $\mu $ of a hypervector space $V$ and finally we characterize it in terms of linear independence in the usual sense.
03E72Fuzzy set theory
15A03Vector spaces, linear dependence, rank
Full Text: DOI
[1] F. Marty, Sur une generalization de la notion de groupe, in: 8th Congress des Mathematiciens Scandinaves, Stockholm, 1934, pp. 45--49. · Zbl 61.1014.03
[2] Corsini, P.: Prolegomena of hypergroup theory, (1993) · Zbl 0785.20032
[3] Corsini, P.; Leoreanu, V.: Applications of hyperstructure theory, (2003) · Zbl 1027.20051
[4] Vougiuklis, T.: Hyperstructures and their representations, (1994)
[5] M.S. Tallini, Hypervector spaces, in: Fourth Int. Congress on AHA, 1990, pp. 167--174. · Zbl 0801.20057
[6] Tallini, M. S.: Weak hypervector spaces and norms in such spaces, , 199-206 (1994) · Zbl 0840.15001
[7] Zadeh, L. A.: Fuzzy sets, Information and control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[8] Rosenfeld, A.: Fuzzy groups, Journal of mathematical analysis and applications 35, 512-517 (1971) · Zbl 0194.05501 · doi:10.1016/0022-247X(71)90199-5
[9] Nanda, S.: Fuzzy linear spaces over valued fields, Fuzzy sets and systems 42, 351-354 (1991) · Zbl 0738.15003 · doi:10.1016/0165-0114(91)90113-5
[10] Katsaras, A. K.; Liu, D. B.: Fuzzy vector spaces and fuzzy topological vector spaces, Journal of mathematical analysis and applications 58, 135-146 (1977) · Zbl 0358.46011 · doi:10.1016/0022-247X(77)90233-5
[11] Malik, D. S.; Mordeson, J. N.: Fuzzy vector space, Information science 55, 271-281 (1991) · Zbl 0727.15001 · doi:10.1016/0020-0255(91)90018-P
[12] Mordeson, J. N.: Generating properties of fuzzy algebraic structures, Fuzzy sets and systems 55, 107-120 (1994) · Zbl 0784.12007 · doi:10.1016/0165-0114(93)90305-2
[13] Kumar, R.: Fuzzy vector space and fuzzy cosets, Fuzzy sets and systems 45, 109-116 (1992) · Zbl 0747.15001 · doi:10.1016/0165-0114(92)90097-N
[14] Ameri, R.: Fuzzy hypervector spaces over valued fields, Iranian journal of fuzzy systems 2, 37-47 (2005) · Zbl 1112.15001
[15] R. Ameri, Fuzzy (Co-)norm hypervector spaces, in: Proceeding of the 8th International Congress in Algebraic Hyperstructures and Applications, Samotraki, Greece, September 1--9, 2002, pp. 71--79. · Zbl 1036.15001
[16] R. Ameri, O.R. Dehghan, Fuzzy hypervector spaces, Advances in Fuzzy Systems, vol. 2008, Article ID 295649. · Zbl 1211.15002 · doi:10.1155/2008/295649
[17] Ameri, R.; Zahedi, M. M.: Hypergroup and join spaces induced by a fuzzy subset, Pure mathematics and applications. PU.M.A. 8, 155-168 (1997) · Zbl 0905.20050
[18] Corsini, P.; Tofan, I.: On fuzzy hypergroups, Pure mathematics and applications. PU.M.A. 8, 29-37 (1997) · Zbl 0906.20049
[19] Davvaz, B.: Fuzzy HV-submodules, Fuzzy sets and systems 117, 477-484 (2001) · Zbl 0974.16041 · doi:10.1016/S0165-0114(98)00366-2
[20] Davvaz, B.: Fuzzy HV-groups, Fuzzy sets and systems 101, 191-195 (1999) · Zbl 0935.20065 · doi:10.1016/S0165-0114(97)00071-7
[21] Zhana, J.; Davvaz, B.; Shum, K. P.: Generalized fuzzy hyperideals of hyperrings, Computers and mathematics with applications 56, No. 7, 1732-1740 (2008) · Zbl 1152.16040 · doi:10.1016/j.camwa.2008.04.002
[22] Ameri, R.; Dehghan, O. R.: Fuzzy basis of fuzzy hypervector spaces, Iranian journal of fuzzy systems 7, 97-213 (2010) · Zbl 1251.15001
[23] Ameri, R.; Dehghan, O. R.: On dimension of hypervector spaces, European journal of pure and applied mathematics 1, No. 2, 32-50 (2008) · Zbl 1157.15033
[24] R. Ameri, O.R. Dehghan, Dimension of fuzzy hypervector spaces, Iranian Journal of Fuzzy Systems (in press). · Zbl 1260.15045