×

Notes on two perturbation estimates of the extreme solutions to the equations \(X\pm A^{*}X^{-1}A=Q\). (English) Zbl 1222.15020

Summary: Two perturbation estimates of the maximal positive definite solutions to the matrix equations \(X+A^{*}X^{-1}A=Q\) and \(X-A^{*}X^{-1}A=Q\) are considered. These estimates are like to the estimates discussed by V. I. Hasanov and I. G. Ivanov [Linear Algebra Appl. 413, No. 1, 81–92 (2006; Zbl 1087.15016)]. The conditions \(\| X_L^{-1}A\|_2 < 1\) and \(\| X_+^{-1}A\|_2 < 1\) in [loc. cit.] are not always satisfied. We replace this conditions by \(\| PX_L^{-1}AP^{-1}\|_2 < 1\) and \(\| PX_+^{-1}AP^{-1}\|_2 < 1\) respective, where \(P\) is positive definite matrix. The theoretical results are illustrated by numerical examples.

MSC:

15A24 Matrix equations and identities

Citations:

Zbl 1087.15016
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Engwerda, J.C.; Ran, A.C.M.; Rijkeboer, A.L., Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation \(X + A^\ast X^{- 1} A = Q\), Linear algebra appl., 186, 255-275, (1993) · Zbl 0778.15008
[2] Engwerda, J.C., On the existence of a positive definite solution of the matrix equation \(X + A^T X^{- 1} A = I\), Linear algebra appl., 194, 91-108, (1993) · Zbl 0798.15013
[3] Guo, C.-H.; Lancaster, P., Iterative solution of two matrix equations, Math. comput., 68, 1589-1603, (1999) · Zbl 0940.65036
[4] Ferrante, A.; Levy, B., Hermitian solutions of the equation \(X = Q + \mathit{NX}^{- 1} N^\ast\), Linear algebra appl., 247, 359-373, (1996)
[5] Ran, A.C.M.; Reurings, M.C.B., A nonlinear matrix equation connected to interpolation theory, Linear algebra appl., 379, 289-302, (2004) · Zbl 1039.15007
[6] Ivanov, I.G.; Hasanov, V.I.; Uhlig, F., Improved methods and starting values to solve the matrix equations \(X \pm A^\ast X^{- 1} A = I\) iteratively, Math. comput., 74, 263-278, (2005) · Zbl 1058.65051
[7] Hasanov, V.I.; Ivanov, I.G.; Uhlig, F., Improved perturbation estimates for the matrix equations \(X \pm A^\ast X^{- 1} A = Q\), Linear algebra appl., 379, 113-135, (2004) · Zbl 1039.15005
[8] Hasanov, V.I.; Ivanov, I.G., On two perturbation estimates of the extreme solutions to the matrix equations \(X \pm A^\ast X^{- 1} A = Q\), Linear algebra appl., 413, 81-92, (2006) · Zbl 1087.15016
[9] Ortega, J.M.; Rheinboldt, W.C., Iterative solution of nonlinear equations in several variables, (1970), Academic Press New York, in Russian, 1975 · Zbl 0241.65046
[10] Sun, J.-G., Perturbation analysis of the matrix equation \(X = Q + A^H(\hat{X} - C)^{- 1} A\), Linear algebra appl., 362, 211-228, (2003)
[11] Sun, J.-G.; Xu, S.-F., Perturbation analysis of the maximal solution of the matrix equation \(X + A^\ast X^{- 1} A = P\). II, Linear algebra appl., 362, 211-228, (2003) · Zbl 1020.15012
[12] Xu, S.-F., Perturbation analysis of the maximal solution of the matrix equation \(X + A^\ast X^{- 1} A = P\), Linear algebra appl., 336, 61-70, (2001) · Zbl 0992.15013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.