×

zbMATH — the first resource for mathematics

The exact solutions to a Ragnisco-Tu hierarchy with self-consistent sources. (English) Zbl 1222.34013
Summary: The Ragnisco-Tu hierarchy with self-consistent sources is derived. Exact solutions of the hierarchy are obtained via the inverse scattering transform (IST). An explicit form for a solution of the Ragnisco-Tu equation is presented.

MSC:
34A33 Ordinary lattice differential equations
34A05 Explicit solutions, first integrals of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mel’nikov, V.K., Integration of the korteweg – de Vries equation with a source, Inverse problems, 6, 233-246, (1990) · Zbl 0712.35088
[2] Mel’nikov, V.K., Integration of the nonlinear Schrödinger equation with a source, Inverse problems, 8, 133-147, (1992) · Zbl 0752.35069
[3] Mel’nikov, V.K., Integration method of the korteweg – de Vries equation with a self-consistent source, Phys. lett. A, 133, 493-496, (1988)
[4] Mel’nikov, V.K., Exact solutions of the korteweg – de Vries equation with a self-consistent source, Phys. lett. A, 128, 488-492, (1988)
[5] Mel’nikov, V.K., Interaction of solitary waves in the system described by the kadomtsev – petviashvili equation with a self-consistent source, Comm. math. phys., 126, 201-215, (1989) · Zbl 0682.76013
[6] Mel’nikov, V.K., New method for deriving nonlinear integrable system, J. math. phys., 31, 1106-1113, (1990) · Zbl 0705.70003
[7] Matsuno, Y., Bilinear Bäcklund transformation for the KdV equation with a source, J. phys. A, 24, L273-L277, (1991) · Zbl 0736.35103
[8] Deng, S.F.; Chen, D.Y.; Zhang, D.J., The multisoliton solutions of the KP equation with self-consistent sources, J. phys. soc. Japan, 72, 2184-2192, (2003) · Zbl 1056.35139
[9] Hao, H.H.; Zhang, D.J.; Deng, S.F., The kadomtsev – petviashvili equation with self-consistent sources in nonuniform media, Theoret. and math. phys., 158, 2, 151-166, (2009) · Zbl 1179.35269
[10] Zeng, Y.B.; Ma, W.X.; Lin, R.L., Integration of the soliton hierarchy with self-consistent sources, J. math. phys., 41, 5453-5489, (2000) · Zbl 0968.37023
[11] Lin, R.L.; Zeng, Y.B.; Ma, W.X., Solving the KdV hierarchy with self-consistent sources by inverse scattering method, Physica A, 291, 287-298, (2001) · Zbl 0972.35128
[12] Li, Qi; Zhang, Da-jun; Chen, Deng-yuan, Solving the hierarchy of the nonisospectral KdV equation with self-consistent sources via the inverse scattering transform, J. phys. A: math. theor., 41, 35, 355209, (2008), 14pp · Zbl 1158.35418
[13] Zeng, Y.B., The Darboux transformation of AKNS equations with auxiliary term, Acta math. sinica, 15, 337-345, (1995), (in Chinese)
[14] Yao, Y.Q.; Zeng, Y.B., The bi-Hamiltonian structure and new solutions of kdv6 equation, Lett. math. phys., 86, 193-208, (2008) · Zbl 1179.35298
[15] Zeng, Y.B., Bi-Hamiltonian structure of JM hierarchy with self-consistent sources, Physica A, 262, 405-419, (1999)
[16] Xiao, T.; Zeng, Y.B., Generalized Darboux transformations for the KP equation with self-consistent sources, J. phys. A, 37, 7143-7162, (2004) · Zbl 1140.35319
[17] Zeng, Y.B.; Ma, W.X.; Shao, Y.J., Two binary Darboux transformations for the KdV hierarchy with self-consistent sources, J. math. phys., 42, 2113-2128, (2001) · Zbl 1005.37044
[18] Zeng, Y.B.; Shao, Y.J.; MA, W.X., Integral-type Darboux transformations for the mkdv hierarchy with self-consistent sources, Commun. theor. phys., 38, 12, 641-648, (2002) · Zbl 1267.37082
[19] Ma, W.X., Soliton, positon and negaton solutions to a Schrödinger self-consistent source equation, J. phys. soc. Japan, 72, 3017-3019, (2003) · Zbl 1133.81332
[20] Ma, W.X., Complexiton solutions of the korteweg – de Vries equation with self-consistent sources, Chaos solitons fractals, 26, 1453-1458, (2005) · Zbl 1098.37064
[21] Zhang, H.W.; Tu, G.Z.; Oevel, W.; Fuchssteiner, B., Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure, J. math. phys., 32, 1908-1918, (1991) · Zbl 0736.35124
[22] Zeng, Y.B., Restricted flows of a hierarchy of integrable discrete systems, Acta math. appl. sinica, 14, 176-184, (1998) · Zbl 0951.37032
[23] Gieseker, D., The Toda hierarchy and the KdV hierarchy, Comm. math. phys., 181, 587-603, (1996) · Zbl 0867.35096
[24] Zeng, Y.B.; Lin, R.L.; Cao, X., The relation between the Toda hierarchy and the KdV hierarchy, Phys. lett. A, 251, 177-183, (1999) · Zbl 0937.37041
[25] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering, (2000), Cambridge University Press Cambridge · Zbl 0762.35001
[26] Ablowitz, M.J.; Ladik, J.F., Nonlinear differential-difference equations and Fourier analysis, J. math. phys., 17, 1011-1018, (1976) · Zbl 0322.42014
[27] Ablowitz, M.J.; Biondini, G.; Prinari, B., Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions, Inverse problems, 23, 1711-1758, (2007) · Zbl 1127.35059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.