zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control. (English) Zbl 1222.34063
Summary: This paper discusses the synchronization and anti-synchronization of new uncertain fractional-order unified chaotic systems (UFOUCS). Based on the idea of active control, a novel active pinning control strategy is presented, which only needs a state of new UFOUCS. The proposed controller can achieve synchronization between a response system and a drive system, and ensure the synchronized robust stability of new UFOUCS. Numerical simulations of new UFOUCS show that the controller can make fractional-order unified chaotic systems (FOUCS) achieve synchronization or anti-synchronization in a quite short period and both are of good robust stability.

34A08Fractional differential equations
34A33Lattice differential equations
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
93D15Stabilization of systems by feedback
Full Text: DOI
[1] Lorenz, E. N.: Deterministic non-periodic flows, J atmos sci 20, 130-141 (1963)
[2] Chen, G.; Ueta, T.: Yet another chaotic attractor, Int J bifurcat chaos 9, No. 7, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[3] Lü, J.; Chen, G.: A new chaotic attractor coined, Int J bifurcat chaos 12, No. 3, 659-661 (2002) · Zbl 1063.34510 · doi:10.1142/S0218127402004620
[4] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos, Phys rev lett 64, No. 2, 821-824 (1990) · Zbl 0964.37501
[5] Pecora, L.; Carroll, T.: Synchronization in chaotic systems, Phys rev lett 64, No. 2, 821-824 (1990) · Zbl 0938.37019
[6] Chen, S.; Wang, F.; Wang, C.: Synchronizing strict-feedback and general strict-feedback chaotic systems via a single controller, Chaos solitons fract 20, No. 2, 235-243 (2004) · Zbl 1052.37061 · doi:10.1016/S0960-0779(03)00370-9
[7] Chen, M.; Han, Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos solitons fract 17, No. 4, 709-716 (2003) · Zbl 1044.93026 · doi:10.1016/S0960-0779(02)00487-3
[8] Wang, Y.; Guan, Z.; Wen, X.: Adaptive synchronization for Chen chaotic system with fully unknown parameters, Chaos solitons fract 19, No. 4, 899-903 (2004) · Zbl 1053.37528 · doi:10.1016/S0960-0779(03)00256-X
[9] Li, C.; Liao, X.; Zhang, X.: Impulsive synchronization of chaotic systems, Chaos 15, No. 023104 (2005) · Zbl 1080.37034
[10] Li, G.: Generalized projective synchronization of two chaotic systems by using active control, Chaos solitons fract 30, No. 1, 77-82 (2006) · Zbl 1144.37372 · doi:10.1016/j.chaos.2005.08.130
[11] Li, G.; Zhou, S.; Yang, K.: Generalized projective synchronization between two different chaotic systems using active backstepping control, Phys lett A 355, No. 4, 326-330 (2006)
[12] Lu, J.; Cao, J.: Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos 15, No. 043901, 1-10 (2005) · Zbl 1144.37378 · doi:10.1063/1.2089207
[13] Chen, S.; Yang, Q.; Wang, C.: Impulsive control and synchronization of unified chaotic system, Chaos solitons fract 20, No. 4, 751-758 (2004) · Zbl 1050.93051 · doi:10.1016/j.chaos.2003.08.008
[14] Chen, M.; Han, Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos solitons fract 17, No. 4, 709-716 (2003) · Zbl 1044.93026 · doi:10.1016/S0960-0779(02)00487-3
[15] Yu, W.; Chen, G.; Lü, J.: On pinning synchronization of complex dynamical networks, Automatica 45, No. 2, 429-435 (2009) · Zbl 1158.93308 · doi:10.1016/j.automatica.2008.07.016
[16] Vaněček, A.; Čelikovský, S.: Control systems: from linear analysis to synthesis of chaos, (1996) · Zbl 0874.93006
[17] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[18] Lü, J.; Zhou, T.; Zhang, S.: Controlling the Chen attractor using linear feedback based on parameter identification, Chin phys 11, No. 1, 12-16 (2002)
[19] Feng, J.; Xu, C.; Tang, J.: Controlling Chen’s chaotic attractor using two different techniques based on parameter identification, Chaos solitons fract 32, 1413-1418 (2007) · Zbl 1129.37317 · doi:10.1016/j.chaos.2005.11.045
[20] Lü, J.; Chen, G.; Cheng, D.; Čelikovský, S.: Bridge the gap between the Lorenz system and the Chen system, Int J bifurcat chaos 12, No. 12, 2917-2926 (2002) · Zbl 1043.37026 · doi:10.1142/S021812740200631X