×

On the reducibility for a class of quasi-periodic Hamiltonian systems with small perturbation parameter. (English) Zbl 1222.37049

Summary: We consider the real two-dimensional nonlinear analytic quasi-periodic Hamiltonian system \(\text{ẋ} = J \nabla_x H\), where \(H(x, t, \varepsilon) = (1/2)\beta(x^2_1 + x^2_2) + F(x, t, \varepsilon)\) with \(\beta \neq 0\), \(\partial_x F(0, t, \varepsilon) = O(\varepsilon)\) and \(\partial_{xx} F(0, t, \varepsilon) = O(\varepsilon)\) as \(\varepsilon \rightarrow 0\). Without any nondegeneracy condition with respect to \(\varepsilon\), we prove that for most of the sufficiently small \(\varepsilon\), by a quasi-periodic symplectic transformation, it can be reduced to a quasi-periodic Hamiltonian system with an equilibrium.

MSC:

37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] N. N. Bogoljubov, J. A. Mitropoliski, and A. M. Samoilenko, Methods of Accelerated Convergence in Nonlinear Mechanics, Springer, New York, NY, USA, 1976.
[2] R. A. Johnson and G. R. Sell, “Smoothness of spectral subbundles and reducibility of quasiperiodic linear differential systems,” Journal of Differential Equations, vol. 41, no. 2, pp. 262-288, 1981. · Zbl 0443.34037 · doi:10.1016/0022-0396(81)90062-0
[3] A. Jorba and C. Simó, “On the reducibility of linear differential equations with quasiperiodic coefficients,” Journal of Differential Equations, vol. 98, no. 1, pp. 111-124, 1992. · Zbl 0761.34026 · doi:10.1016/0022-0396(92)90107-X
[4] L. H. Eliasson, “Floquet solutions for the one-dimensional quasi-periodic Schrödinger equation,” Communications in Mathematical Physics, vol. 146, no. 3, pp. 447-482, 1992. · Zbl 0753.34055 · doi:10.1007/BF02097013
[5] L. H. Eliasson, “Almost reducibility of linear quasi-periodic systems,” in Smooth Ergodic Theory and Its Applications (Seattle, WA, 1999), vol. 69 of Proceedings of Symposia in Pure Mathematics, pp. 679-705, American Mathematical Society, Providence, RI, USA, 2001. · Zbl 1015.34028
[6] H.-L. Her and J. You, “Full measure reducibility for generic one-parameter family of quasi-periodic linear systems,” Journal of Dynamics and Differential Equations, vol. 20, no. 4, pp. 831-866, 2008. · Zbl 1166.34019 · doi:10.1007/s10884-008-9113-6
[7] A. Jorba and C. Simó, “On quasi-periodic perturbations of elliptic equilibrium points,” SIAM Journal on Mathematical Analysis, vol. 27, no. 6, pp. 1704-1737, 1996. · Zbl 0863.34043 · doi:10.1137/S0036141094276913
[8] X. Wang and J. Xu, “On the reducibility of a class of nonlinear quasi-periodic system with small perturbation parameter near zero equilibrium point,” Nonlinear Analysis, vol. 69, no. 7, pp. 2318-2329, 2008. · Zbl 1151.34030 · doi:10.1016/j.na.2007.08.016
[9] H. Whitney, “Analytic extensions of differentiable functions defined in closed sets,” Transactions of the American Mathematical Society, vol. 36, no. 1, pp. 63-89, 1934. · Zbl 0008.24902 · doi:10.2307/1989708
[10] L. Zhang and J. Xu, “Persistence of invariant torus in Hamiltonian systems with two-degree of freedom,” Journal of Mathematical Analysis and Applications, vol. 338, no. 2, pp. 793-802, 2008. · Zbl 1134.37025 · doi:10.1016/j.jmaa.2007.05.052
[11] J. Moser, “Convergent series expansions for quasi-periodic motions,” Mathematische Annalen, vol. 169, pp. 136-176, 1967. · Zbl 0179.41102 · doi:10.1007/BF01399536
[12] M. B. Sevryuk, “KAM-stable Hamiltonians,” Journal of Dynamical and Control Systems, vol. 1, no. 3, pp. 351-366, 1995. · Zbl 0951.37038 · doi:10.1007/BF02269374
[13] K. Soga, “A point-wise criterion for quasi-periodic motions in the KAM theory,” Nonlinear Analysis, vol. 73, no. 10, pp. 3151-3161, 2010. · Zbl 1380.70042 · doi:10.1016/j.na.2010.06.058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.