zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hopf bifurcation analysis in a synaptically coupled FHN neuron model with delays. (English) Zbl 1222.37097
Summary: We present an investigation of stability and Hopf bifurcation of the synaptically coupled nonidentical FHN model with two time delays. We first consider the existence of local Hopf bifurcations, by regarding the sum of the two delays as a parameter, then derive explicit formulas for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions, using the normal form method and center manifold theory. Finally, numerical simulations are carried out for supporting the theoretical analysis.

37N25Dynamical systems in biology
92C20Neural biology
34K18Bifurcation theory of functional differential equations
34K20Stability theory of functional-differential equations
37G15Bifurcations of limit cycles and periodic orbits
Full Text: DOI
[1] Hodgkin, A. L.; Huxley, A. F.: A quantitative description of membrane and its application to conduction and excitation in nerve, J physiol 117, 500-544 (1952)
[2] Fitzhugh, R.: Impulses and physiological state in theoretical models of nerve membrane, Biophys J 1, 445-466 (1961)
[3] Nagumo, J.; Arimoto, S.; Yoshizawa, S.: An active pulse transmission line simulating nerve axon, Proc IRE 50, 2061-2070 (1962)
[4] Bautin, A. N.: Qualitative investigation of a particular nonlinear system, J appl math mech 39, 606-615 (1975) · Zbl 0369.34013 · doi:10.1016/0021-8928(75)90061-1
[5] Tetsushi, U.; Hisayo, M.; Takuji, K.; Hiroshi, K.: Bifurcation and chaos in coupled BVP oscillators, Int J bifurcation chaos 4, No. 14, 1305-1324 (2004) · Zbl 1086.37530
[6] Tetsushi, U.; Hiroshi, K.: Bifurcation in asymmetrically coupled BVP oscillators, Int J bifurcation chaos 5, No. 13, 1319-1327 (2003) · Zbl 1064.34513 · doi:10.1142/S0218127403007199
[7] Kunichika, T.; Kazuyuki, A.; Hiroshi, K.: Bifurcations in synaptically coupled BVP neurons, Int J bifurcation chaos 4, No. 11, 1053-1064 (2001)
[8] Dhamala, M.; Jirsa, V. K.; Ding, M.: Enhancement of neural synchronization by time delay, Phys rev lett 92, 028101 (2004)
[9] Nikola, B.; Dragana, T.: Dynamics of Fitzhugh -- Nagumo excitable system with delayed coupling, Phys rev E 67, 066222 (2003)
[10] Nikola, B.; Inse, G.; Nebojsa, V.: Type I vs. Type II excitable system with delayed coupling, Chaos solitons fract 23, No. 2, 1221-1233 (2005) · Zbl 1100.34060
[11] Wang, Q.; Lu, Q.; Chen, G.; Feng, Z.; Duan, L.: Bifurcation and synchronization of synaptically coupled FHN models with time delay, Chaos soliton fract 39, 918-925 (2009)
[12] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H.: Theory and applications of Hopf bifurcation, (1981) · Zbl 0474.34002
[13] Ruan, S.; Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn contin, discrete impulsive syst ser A: math anal 10, 863-874 (2003) · Zbl 1068.34072
[14] Li, X.; Wei, J.: On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays, Chaos soliton fract 26, 519-526 (2005) · Zbl 1098.37070 · doi:10.1016/j.chaos.2005.01.019
[15] Ruan, S.; Wei, J.: On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, IMA J math appl med biol 18, 41-52 (2001) · Zbl 0982.92008
[16] Hu H, Huang L. Stability and Hopf bifurcation analysis on a ring of four neurons with delays. Appl Math Comput; Available online 29 March 2009. · Zbl 1175.34092
[17] Wei, J.; Ruan, S.: Stability and bifurcation in a neural network model with two delays, Physica D 130, 255-272 (1999) · Zbl 1066.34511 · doi:10.1016/S0167-2789(99)00009-3
[18] Yuan, Y.; Campbell, S. A.: Stability and synchronization of a ring of identical cells with delayed coupling, J dyn differ equat 16, No. 3, 709-744 (2004) · Zbl 1071.34079 · doi:10.1007/s10884-004-6114-y
[19] Guo, S.; Huang, L.: Hopf bifurcating periodic orbits in a ring of neurons with delays, Physica D 183, 19-44 (2003) · Zbl 1041.68079 · doi:10.1016/S0167-2789(03)00159-3
[20] Wei, J.; Velarde, M.: Bifurcation analysis and existence of periodic solutions in a simple neural network with delays, Chaos 14, No. 3, 940-952 (2004) · Zbl 1080.34064 · doi:10.1063/1.1768111
[21] Wei, J.; Yuan, Y.: Synchronized Hopf bifurcation analysis in a neural network model with delays, J math anal appl 312, 205-229 (2005) · Zbl 1085.34058 · doi:10.1016/j.jmaa.2005.03.049
[22] Wang, L.; Zou, X.: Hopf bifurcation in bidirectional associative memory neural networks with delays: analysis and computation, J comput appl math 167, 73-90 (2004) · Zbl 1054.65076 · doi:10.1016/j.cam.2003.09.047
[23] Fan, D.; Wei, J.: Hopf bifurcation analysis in a tri-neuron network with time delay, Nonlinear anal: real world appl 9, 9-25 (2008) · Zbl 1149.34044 · doi:10.1016/j.nonrwa.2006.08.008
[24] Wu, J.; Faria, T.; Huang, Y. S.: Synchronization and stable phase-locking in a network of neurons with memory, Math comput model 30, 117-138 (1999) · Zbl 1043.92500 · doi:10.1016/S0895-7177(99)00120-X
[25] Wu, J.: Symmetric functional differential equations and neural networks with memory, Trans amer math soc 350, 4799-4838 (1998) · Zbl 0905.34034 · doi:10.1090/S0002-9947-98-02083-2