zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fractional-order attractors synthesis via parameter switchings. (English) Zbl 1222.37107
Summary: We provide numerical evidence, via graphics generated with the help of computer simulations, that switching the control parameter of a dynamical system belonging to a class of fractional-order systems in a deterministic way, one obtains an attractor which belongs to the class of all admissible attractors of the considered system. For this purpose, while a multistep numerical method for fractional-order differential equations approximates the solution to the mathematical model, the control parameter is switched periodically every few integration steps. The switch is made inside of a considered set of admissible parameter values. Moreover, the synthesized attractor matches the attractor obtained with the control parameter replaced with the averaged switched parameter values. The results are verified in this paper on a representative system, the fractional-order Lü system. In this way we were able to extend the applicability of the algorithm presented in earlier papers using a numerical method for fractional differential equations.

37N35Dynamical systems in control
34A08Fractional differential equations
37D45Strange attractors, chaotic dynamics
26A33Fractional derivatives and integrals (real functions)
37C70Attractors and repellers, topological structure
Full Text: DOI
[1] Danca, M. -F.; Tang, W. K. S.; Chen, G.: A switching scheme for synthesizing attractors of dissipative chaotic systems, Appl math comput 201, 650-667 (2008) · Zbl 1147.65104 · doi:10.1016/j.amc.2008.01.003
[2] Danca, M. -F.: Random parameter-switching synthesis of a class of hyperbolic attractors, Chaos 18, 033111 (2008) · Zbl 1309.93062
[3] Lu, J. G.: Chaotic dynamics of the fractional-order Lü system and its synchronization, Phys lett A 354, 305-311 (2006)
[4] Hirsch, M.; Pugh, C.: Stable manifolds and hyperbolic sets, Proc sympos pure math 14, 133-164 (1970) · Zbl 0215.53001
[5] Hirsch, W. M.; Smale, S.; Devaney, L. R.: Differential equations dynamical systems and an introduction to chaos, (2004) · Zbl 1135.37002
[6] Kapitanski, L.; Rodnianski, I.: Shape and Morse theory of attractors, Commun pure appl math 53, 218-242 (2000) · Zbl 1026.37007 · doi:10.1002/(SICI)1097-0312(200002)53:2<218::AID-CPA2>3.0.CO;2-W
[7] Temam, R.: Infinite dimensional dynamical systems in mechanics and physics, (1988) · Zbl 0662.35001
[8] Foias, C.; Jolly, M. S.: On the numerical algebraic approximation of global attractors, Nonlinearity 8, 95-319 (1995) · Zbl 0837.34052 · doi:10.1088/0951-7715/8/3/001
[9] Milnor, J.: On the concept of attractor, Commun math phys 99, 177-195 (1985) · Zbl 0595.58028 · doi:10.1007/BF01212280
[10] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[11] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives, (1999) · Zbl 0617.26004
[12] Ahmed, E.; Elgazzar, A. S.: On fractional order differential equations model for nonlocal epidemics, Physica A 379, 607-614 (2007)
[13] Chen, W.: Nonlinear dynamics and chaos in a fractional-order financial system, Chaos, solitons & fractals 36, 1305-1314 (2008)
[14] El-Sayed, A. M. A.; El-Mesiry, A. E. M.; El-Saka, H. A. A.: On the fractional-order logistic equation, Appl math lett 20, 817-823 (2007) · Zbl 1140.34302 · doi:10.1016/j.aml.2006.08.013
[15] , Applications of fractional calculus in physics (2001)
[16] Kiani, B. A.; Fallahi, K.; Pariz, N.; Leung, H.: A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Commun nonlinear sci numer simul 14, 863-879 (2009) · Zbl 1221.94049 · doi:10.1016/j.cnsns.2007.11.011
[17] Laskin, N.: Fractional market dynamics, Physica A 287, 482-492 (2000)
[18] Oustaloup A. La Dérivation Non Entière: Théorie, Synthèse et Applications (Hermes, Paris); 1995. · Zbl 0864.93004
[19] Podlubny, I.; Petráš, I.; Vinagre, B. M.; O’leary, P.; Dorcák, L.: Analogue realization of fractional-order controllers, Nonlinear dynam 29, 281-296 (2002) · Zbl 1041.93022 · doi:10.1023/A:1016556604320
[20] Sun, H. H.; Abdelwahab, A. A.; Onaral, B.: Linear approximation of transfer function with a pole of fractional order, IEEE trans automat contr 29, 441-444 (1984) · Zbl 0532.93025 · doi:10.1109/TAC.1984.1103551
[21] Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear dynam 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[22] Diethelm, K.; Ford, N. J.; Freed, A. D.: Detailed error analysis for a fractional Adams method, Numer algorithms 36, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[23] Tavazoei, M. S.: Comments on stability analysis of a class of nonlinear fractional-order systems, IEEE trans circ syst II 56, 519-520 (2009)
[24] Tavazoei, M. S.; Haeri, M.; Bolouki, S.; Siami, M.: Stability preservation analysis for frequency-based methods in numerical simulation of fractional-order systems, SIAM J numer anal 47, 321-338 (2008) · Zbl 1203.26012 · doi:10.1137/080715949
[25] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.: Numerical recipes in C: The art of scientific computing, (1992) · Zbl 0778.65002
[26] Petráš, I.: Chaos in the fractional-order volta’s system: modeling and simulation, Nonlinear dynam 57, 157-170 (2009) · Zbl 1176.34050 · doi:10.1007/s11071-008-9429-0
[27] Hartley, T. T.; Lorenzo, C. F.; Qammar, H. Killory: Chaos in a fractional order Chua’s system, IEEE trans circ syst I 42, 485-490 (1995)
[28] Lü, J.; Chen, G.; Cheng, D.; Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system, Int J bifurcat chaos 12, 2917-2926 (2002) · Zbl 1043.37026 · doi:10.1142/S021812740200631X
[29] Falconer, K.: Fractal geometry: mathematical foundations and applications, (1990) · Zbl 0689.28003