A continuous semigroup of notions of independence between the classical and the free one. (English) Zbl 1222.46049

Summary: We investigate a continuous family of notions of independence which interpolates between the classical and free ones for noncommutative random variables. These notions are related to the liberation process introduced by D. Voiculescu [Adv. Math. 146, No. 2, 101–166 (1999; Zbl 0956.46045)]. To each notion of independence correspond new convolutions of probability measures, for which we establish formulae and of which we compute simple examples. We prove that there exists no reasonable analogue of classical and free cumulants associated to these notions of independence.


46L54 Free probability and free operator algebras
15B52 Random matrices (algebraic aspects)
46L53 Noncommutative probability and statistics


Zbl 0956.46045
Full Text: DOI arXiv


[1] Benaych-Georges, F. (2009). Rectangular random matrices, related convolution. Probab. Theory Related Fields 144 471-515. · Zbl 1171.15022 · doi:10.1007/s00440-008-0152-z
[2] Benaych-Georges, F. and Cabanal-Duvillard, T. From classical to free infinite divisibility. Unpublished manuscript, UPMC Univ. Paris 6 and Univ. Paris 5. · Zbl 1194.46088
[3] Benaych-Georges, F. and Chapon, F. Random right eigenvalues of random matrices with quaternionic entries. Unpublished manuscript, UPMC Univ. Paris 6. · Zbl 1245.15035
[4] Biane, P. (1997). Free Brownian motion, free stochastic calculus and random matrices. In Free Probability Theory ( Waterloo , ON , 1995). Fields Inst. Commun. 12 1-19. Amer. Math. Soc., Providence, RI. · Zbl 0873.60056
[5] Biane, P. (1997). Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems. J. Funct. Anal. 144 232-286. · Zbl 0889.47013 · doi:10.1006/jfan.1996.2990
[6] Biane, P. (2003). Free probability for probabilists. In Quantum Probability Communications , Vol. XI ( Grenoble , 1998) 55-71. World Sci. Publ., River Edge, NJ. · Zbl 1105.46045
[7] Biane, P. and Speicher, R. (1998). Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Related Fields 112 373-409. · Zbl 0919.60056 · doi:10.1007/s004400050194
[8] Haagerup, U. and Larsen, F. (2000). Brown’s spectral distribution measure for R -diagonal elements in finite von Neumann algebras. J. Funct. Anal. 176 331-367. · Zbl 0984.46042 · doi:10.1006/jfan.2000.3610
[9] Nelson, E. (1974). Notes on non-commutative integration. J. Funct. Anal. 15 103-116. · Zbl 0292.46030 · doi:10.1016/0022-1236(74)90014-7
[10] Nica, A. and Speicher, R. (2006). Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335 . Cambridge Univ. Press, Cambridge. · Zbl 1133.60003 · doi:10.1017/CBO9780511735127
[11] Speicher, R. (1997). On universal products. In Free Probability Theory ( Waterloo , ON , 1995). Fields Inst. Commun. 12 257-266. Amer. Math. Soc., Providence, RI. · Zbl 0877.46044
[12] Voiculescu, D. (1999). The analogues of entropy and of Fisher’s information measure in free probability theory. VI. Liberation and mutual free information. Adv. Math. 146 101-166. · Zbl 0956.46045 · doi:10.1006/aima.1998.1819
[13] Voiculescu, D. V., Dykema, K. J. and Nica, A. (1992). Free Random Variables : A Noncommutative Probability Approach to Free Products with Applications to Random Matrices , Operator Algebras and Harmonic Analysis on Free Groups. CRM Monograph Series 1 . Amer. Math. Soc., Providence, RI. · Zbl 0795.46049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.