zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A general iterative method for equilibrium problems and strict pseudo-contractions in Hilbert spaces. (English) Zbl 1222.47104
Summary: We introduce two iterative schemes by the general iterative method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a $k$-strictly pseudo-contractive non-self mapping in the setting of real Hilbert spaces. Our results improve and extend the corresponding results given by many others.

47J25Iterative procedures (nonlinear operator equations)
47H09Mappings defined by “shrinking” properties
47H05Monotone operators (with respect to duality) and generalizations
47H06Accretive operators, dissipative operators, etc. (nonlinear)
Full Text: DOI
[1] Blum, E.; Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. stud. 63, 123-145 (1994) · Zbl 0888.49007
[2] Moudafi, A.; Thera, M.: Proximal and dynamical approaches to equilibrium problems. Lecture notes in economics and mathematical systems 477, 187-201 (1999)
[3] Plubtieng, S.; Punpaeng, R.: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. J. math. Anal. appl. 336, 455-469 (2007) · Zbl 1127.47053
[4] Takahashi, S.; Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. math. Anal. appl. 331, 506-515 (2007) · Zbl 1122.47056
[5] Tada, A.; Takahashi, W.: Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem. J. optim. Theory appl. 133, 359-370 (2007) · Zbl 1147.47052
[6] Marino, G.; Xu, H. K.: A general iterative method for nonexpansive mappings in Hilbert spaces. J. math. Anal. appl. 318, 43-52 (2006) · Zbl 1095.47038
[7] Qin, X.; Shang, M.; Kang, S. M.: Strong convergence theorems of modified Mann iterative process for strict pseudo-contractions in Hilbert spaces. Nonlinear anal. 70, 1257-1264 (2009) · Zbl 1225.47107
[8] Ceng, L. -C.: An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings. J. comput. Appl. math. 223, 967-974 (2009) · Zbl 1167.47307
[9] Iiduka, H.; Takahashi, W.: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear anal. 61, 341-350 (2005) · Zbl 1093.47058
[10] Combettes, P. L.; Hirstoaga, A.: Equilibrium programming in Hilbert spaces. J. nonlinear convex anal. 6, 117-136 (2005) · Zbl 1109.90079
[11] Zhou, H.: Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert space. Nonlinear anal. 69, 456-462 (2008) · Zbl 1220.47139
[12] Browder, F. E.; Petryshyn, W. V.: Construction of fixed points of nonlinear mappings in Hilbert space. J. math. Anal. appl. 20, 197-228 (1967) · Zbl 0153.45701
[13] Chang, S. S.: Some problems and results in the study of nonlinear analysis. Nonlinear anal. TMA 30, No. 7, 4197-4208 (1997) · Zbl 0901.47036
[14] Xu, H. K.: Viscosity approximation methods for nonexpansive mappings. J. math. Anal. appl. 298, 279-291 (2004) · Zbl 1061.47060