Robert, Christian; Casella, George A short history of Markov chain Monte Carlo: Subjective recollections from incomplete data. (English) Zbl 1222.65006 Stat. Sci. 26, No. 1, 102-115 (2011). Summary: We attempt to trace the history and development of Markov chain Monte Carlo (MCMC) from its early inception in the late 1940s through its use today. We see how the earlier stages of Monte Carlo (MC, not MCMC) research have led to the algorithms currently in use. More importantly, we see how the development of this methodology has not only changed our solutions to problems, but has changed the way we think about problems. Cited in 13 Documents MSC: 65C05 Monte Carlo methods 65C40 Numerical analysis or methods applied to Markov chains 60J22 Computational methods in Markov chains 65-03 History of numerical analysis 01A60 History of mathematics in the 20th century Keywords:Gibbs sampling; Metropolis-Hasting algorithm; hierarchical models; Bayesian methods; Markov chain Monte Carlo PDF BibTeX XML Cite \textit{C. Robert} and \textit{G. Casella}, Stat. Sci. 26, No. 1, 102--115 (2011; Zbl 1222.65006) Full Text: DOI arXiv References: [1] Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 669-679. JSTOR: · Zbl 0774.62031 [2] Andrieu, C., de Freitas, N., Doucet, A. and Jordan, M. (2004). An introduction to MCMC for machine learning. Machine Learning 50 5-43. · Zbl 1033.68081 [3] Athreya, K. B. and Ney, P. (1978). A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245 493-501. · Zbl 0397.60053 [4] Athreya, K. B., Doss, H. and Sethuraman, J. (1996). On the convergence of the Markov chain simulation method. Ann. Statist. 24 69-100. · Zbl 0860.60057 [5] Barker, A. (1965). Monte Carlo calculations of the radial distribution functions for a proton electron plasma. Aust. J. Physics 18 119-133. [6] Berthelsen, K. and Møller, J. (2003). Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling. Scand. J. Statist. 30 549-564. · Zbl 1034.62093 [7] Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). J. Roy. Statist. Soc. Ser. B 36 192-236. JSTOR: · Zbl 0327.60067 [8] Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician 24 179-195. [9] Besag, J. (1986). On the statistical analysis of dirty pictures. J. Roy. Statist. Soc. Ser. B 48 259-302. JSTOR: · Zbl 0609.62150 [10] Besag, J. and Clifford, P. (1989). Generalized Monte Carlo significance tests. Biometrika 76 633-642. JSTOR: · Zbl 0679.62033 [11] Besag, J., York, J. and Mollié, A. (1991). Bayesian image restoration, with two applications in spatial statistics (with discussion). Ann. Inst. Statist. Math. 43 1-59. · Zbl 0760.62029 [12] Billingsley, P. (1995). Probability and Measure , 3rd ed. Wiley, New York. · Zbl 0822.60002 [13] Broniatowski, M., Celeux, G. and Diebolt, J. (1984). Reconnaissance de mélanges de densités par un algorithme d’apprentissage probabiliste. In Data Analysis and Informatics, III (Versailles, 1983) 359-373. North-Holland, Amsterdam. [14] Brooks, S. P., Giudici, P. and Roberts, G. O. (2003). Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 65 3-55. JSTOR: · Zbl 1063.62120 [15] Cappé, O., Robert, C. P. and Rydén, T. (2003). Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 679-700. JSTOR: · Zbl 1063.62133 [16] Carlin, B. and Chib, S. (1995). Bayesian model choice through Markov chain Monte Carlo. J. Roy. Statist. Soc. Ser. B 57 473-484. · Zbl 0827.62027 [17] Carlin, B., Gelfand, A. and Smith, A. (1992). Hierarchical Bayesian analysis of change point problems. Appl. Statist. 41 389-405. · Zbl 0825.62408 [18] Carpenter, J., Clifford, P. and Fernhead, P. (1997). Building robust simulation-based filters for evolving datasets. Technical report, Dept. Statistics, Oxford Univ. [19] Casella, G. and George, E. I. (1992). Explaining the Gibbs sampler. Amer. Statist. 46 167-174. JSTOR: · Zbl 04510859 [20] Casella, G., Lavine, M. and Robert, C. P. (2001). Explaining the perfect sampler. Amer. Statist. 55 299-305. JSTOR: [21] Celeux, G. and Diebolt, J. (1985). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comput. Statist. Quater 2 73-82. [22] Celeux, G. and Diebolt, J. (1990). Une version de type recuit simulé de l’algorithme EM. C. R. Acad. Sci. Paris Sér. I Math. 310 119-124. · Zbl 0693.62035 [23] Chan, K. and Geyer, C. (1994). Discussion of “Markov chains for exploring posterior distribution.” Ann. Statist. 22 1747-1758. · Zbl 0829.62080 [24] Chen, M.-H., Shao, Q.-M. and Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian Computation . Springer, New York. · Zbl 0949.65005 [25] Churchill, G. (1995). Accurate restoration of DNA sequences (with discussion). In Case Studies in Bayesian Statistics ( C. Gatsonis and J. S. Hodges, eds.) 2 90-148. Springer, New York. · Zbl 0897.92012 [26] Cressie, N. A. C. (1993). Statistics for Spatial Data . Wiley, New York. Revised reprint of the 1991 edition. · Zbl 0799.62002 [27] Damien, P., Wakefield, J. and Walker, S. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 331-344. JSTOR: · Zbl 0913.62028 [28] Del Moral, P., Doucet, A. and Jasra, A. (2006). Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 411-436. JSTOR: · Zbl 1105.62034 [29] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38. JSTOR: · Zbl 0364.62022 [30] Diebolt, J. and Robert, C. P. (1994). Estimation of finite mixture distributions through Bayesian sampling. J. Roy. Statist. Soc. Ser. B 56 363-375. JSTOR: · Zbl 0796.62028 [31] Dimakos, X. K. (2001). A guide to exact simulation. Internat. Statist. Rev. 69 27-48. · Zbl 1213.62004 [32] Doucet, A., de Freitas, N. and Gordon, N. (2001). Sequential Monte Carlo Methods in Practice . Springer, New York. · Zbl 0967.00022 [33] Doucet, A., Godsill, S. and Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statist. Comput. 10 197-208. [34] Dupuis, J. A. (1995). Bayesian estimation of movement and survival probabilities from capture-recapture data. Biometrika 82 761-772. JSTOR: · Zbl 0861.62072 [35] Eckhardt, R. (1987). Stan Ulam, John von Neumann, and the Monte Carlo method. Los Alamos Sci. 15 Special Issue 131-137. [36] Ehrman, J. R., Fosdick, L. D. and Handscomb, D. C. (1960). Computation of order parameters in an Ising lattice by the Monte Carlo method. J. Math. Phys. 1 547-558. · Zbl 0097.44801 [37] Fernández, R., Ferrari, P. and Garcia, N. L. (1999). Perfect simulation for interacting point processes, loss networks and Ising models. Technical report, Laboratoire Raphael Salem, Univ. de Rouen. · Zbl 1075.60583 [38] Fill, J. A. (1998a). An interruptible algorithm for perfect sampling via Markov chains. Ann. Appl. Probab. 8 131-162. · Zbl 0939.60084 [39] Fill, J. (1998b). The move-to front rule: A case study for two perfect sampling algorithms. Prob. Eng. Info. Sci 8 131-162. · Zbl 0978.62013 [40] Fismen, M. (1998). Exact simulation using Markov chains. Technical Report 6/98, Institutt for Matematiske Fag, Oslo. Diploma-thesis. [41] Gelfand, A. E. and Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations. J. Roy. Statist. Soc. Ser. B 56 501-514. JSTOR: · Zbl 0800.62170 [42] Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398-409. JSTOR: · Zbl 0702.62020 [43] Gelfand, A. E., Smith, A. F. M. and Lee, T.-M. (1992). Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. J. Amer. Statist. Assoc. 87 523-532. JSTOR: [44] Gelfand, A., Hills, S., Racine-Poon, A. and Smith, A. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Amer. Statist. Assoc. 85 972-982. [45] Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statist. Sci. 7 457-511. · Zbl 0767.62021 [46] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721-741. · Zbl 0573.62030 [47] George, E. and McCulloch, R. (1993). Variable selection via Gibbbs sampling. J. Amer. Statist. Assoc. 88 881-889. [48] George, E. I. and Robert, C. P. (1992). Capture-recapture estimation via Gibbs sampling. Biometrika 79 677-683. JSTOR: · Zbl 0764.62028 [49] Geyer, C. (1992). Practical Monte Carlo Markov chain (with discussion). Statist. Sci. 7 473-511. [50] Geyer, C. J. and Møller, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scand. J. Statist. 21 359-373. · Zbl 0809.62089 [51] Geyer, C. and Thompson, E. (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc. 90 909-920. · Zbl 0850.62834 [52] Gilks, W. (1992). Derivative-free adaptive rejection sampling for Gibbs sampling. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 641-649. Oxford Univ. Press, Oxford. · Zbl 0825.62407 [53] Gilks, W. R. and Berzuini, C. (2001). Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 127-146. JSTOR: · Zbl 0976.62021 [54] Gilks, W., Best, N. and Tan, K. (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Appl. Statist. 44 455-472. · Zbl 0893.62110 [55] Gilks, W. R., Roberts, G. O. and Sahu, S. K. (1998). Adaptive Markov chain Monte Carlo through regeneration. J. Amer. Statist. Assoc. 93 1045-1054. JSTOR: · Zbl 1064.65503 [56] Gordon, N., Salmond, J. and Smith, A. (1993). A novel approach to non-linear/non-Gaussian Bayesian state estimation. IEEE Proceedings on Radar and Signal Processing 140 107-113. [57] Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711-732. JSTOR: · Zbl 0861.62023 [58] Guihenneuc-Jouyaux, C. and Robert, C. P. (1998). Discretization of continuous Markov chains and Markov chain Monte Carlo convergence assessment. J. Amer. Statist. Assoc. 93 1055-1067. JSTOR: · Zbl 1013.60055 [59] Hammersley, J. M. (1974). Discussion of Mr Besag’s paper. J. Roy. Statist. Soc. Ser. B 36 230-231. JSTOR: [60] Hammersley, J. M. and Handscomb, D. C. (1964). Monte Carlo Methods . Wiley, New York. · Zbl 0121.35503 [61] Hammersley, J. M. and Morton, K. W. (1954). Poor man’s Monte Carlo. J. Roy. Statist. Soc. Ser. B . 16 23-38. · Zbl 0055.36901 [62] Handschin, J. E. and Mayne, D. Q. (1969). Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. Internat. J. Control 9 547-559. · Zbl 0174.51201 [63] Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika 57 97-109. · Zbl 0219.65008 [64] Hitchcock, D. B. (2003). A history of the Metropolis-Hastings algorithm. Amer. Statist. 57 254-257. · Zbl 05680550 [65] Hobert, J. P. and Casella, G. (1996). The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. J. Amer. Statist. Assoc. 91 1461-1473. JSTOR: · Zbl 0882.62020 [66] Hobert, J. P. and Marchev, D. (2008). A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms. Ann. Statist. 36 532-554. · Zbl 1155.60031 [67] Hobert, J. P., Jones, G. L., Presnell, B. and Rosenthal, J. S. (2002). On the applicability of regenerative simulation in Markov chain Monte Carlo. Biometrika 89 731-743. JSTOR: · Zbl 1035.60080 [68] Jones, G. L. and Hobert, J. P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16 312-334. · Zbl 1127.60309 [69] Jones, G. L., Haran, M., Caffo, B. S. and Neath, R. (2006). Fixed-width output analysis for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 101 1537-1547. · Zbl 1171.62316 [70] Kemeny, J. G. and Snell, J. L. (1960). Finite Markov Chains . Van Nostrand, Princeton, NJ. · Zbl 0089.13704 [71] Kendall, W. S. and Møller, J. (2000). Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes. Adv. in Appl. Probab. 32 844-865. · Zbl 1123.60309 [72] Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1-19. · Zbl 0588.60058 [73] Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M. P. (1983). Optimization by simulated annealing. Science 220 671-680. · Zbl 1225.90162 [74] Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Statist. 5 1-25. JSTOR: [75] Kong, A., Liu, J. and Wong, W. (1994). Sequential imputations and Bayesian missing data problems. J. Amer. Statist. Assoc. 89 278-288. · Zbl 0800.62166 [76] Kuhn, T. (1996). The Structure of Scientific Revolutions , 3rd ed. Univ. Chicago Press, Chicago. [77] Landau, D. P. and Binder, K. (2005). A Guide to Monte Carlo Simulations in Statistical Physics . Cambridge Univ. Press, Cambridge. · Zbl 1086.82001 [78] Lange, N., Carlin, B. P. and Gelfand, A. E. (1992). Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers. J. Amer. Statist. Assoc. 87 615-626. · Zbl 0850.62838 [79] Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, A. F. and Wootton, J. C. (1993). Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science 262 208-214. [80] Liu, J. and Chen, R. (1995). Blind deconvolution via sequential imputations. J. Amer. Statist. Assoc. 90 567-576. · Zbl 0826.62062 [81] Liu, C. and Rubin, D. B. (1994). The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence. Biometrika 81 633-648. JSTOR: · Zbl 0812.62028 [82] Liu, J. S. and Wu, Y. N. (1999). Parameter expansion for data augmentation. J. Amer. Statist. Assoc. 94 1264-1274. JSTOR: · Zbl 1069.62514 [83] Liu, J. S., Wong, W. H. and Kong, A. (1994). Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes. Biometrika 81 27-40. JSTOR: · Zbl 0811.62080 [84] Liu, J. S., Wong, W. H. and Kong, A. (1995). Covariance structure and convergence rate of the Gibbs sampler with various scans. J. Roy. Statist. Soc. Ser. B 57 157-169. JSTOR: · Zbl 0811.60056 [85] Madras, N. and Slade, G. (1993). The Self-Avoiding Walk . Birkhäuser, Boston, MA. · Zbl 0780.60103 [86] Marin, J.-M. and Robert, C. P. (2007). Bayesian Core: A Practical Approach to Computational Bayesian Statistics . Springer, New York. · Zbl 1137.62013 [87] Marshall, A. (1965). The use of multi-stage sampling schemes in Monte Carlo computations. In Symposium on Monte Carlo Methods . Wiley, New York. [88] Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80 267-278. JSTOR: · Zbl 0778.62022 [89] Meng, X.-L. and van Dyk, D. A. (1999). Seeking efficient data augmentation schemes via conditional and marginal augmentation. Biometrika 86 301-320. JSTOR: · Zbl 1054.62505 [90] Mengersen, K. L. and Tweedie, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24 101-121. · Zbl 0854.60065 [91] Metropolis, N. (1987). The beginning of the Monte Carlo method. Los Alamos Sci. 15 Special Issue 125-130. [92] Metropolis, N. and Ulam, S. (1949). The Monte Carlo method. J. Amer. Statist. Assoc. 44 335-341. JSTOR: · Zbl 0033.28807 [93] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953). Equations of state calculations by fast computing machines. J. Chem. Phys. 21 1087-1092. [94] Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes . Chapman & Hall/CRC, Boca Raton. · Zbl 1039.62089 [95] Moussouris, J. (1974). Gibbs and Markov random systems with constraints. J. Statist. Phys. 10 11-33. [96] Mykland, P., Tierney, L. and Yu, B. (1995). Regeneration in Markov chain samplers. J. Amer. Statist. Assoc. 90 233-241. JSTOR: · Zbl 0819.62082 [97] Neal, R. (1996). Sampling from multimodal distributions using tempered transitions. Statist. Comput. 6 353-356. [98] Neal, R. M. (2003). Slice sampling (with discussion). Ann. Statist. 31 705-767. · Zbl 1051.65007 [99] Pearl, J. (1987). Evidential reasoning using stochastic simulation of causal models. Artificial Intelligence 32 245-257. · Zbl 0642.68177 [100] Peskun, P. H. (1973). Optimum Monte-Carlo sampling using Markov chains. Biometrika 60 607-612. JSTOR: · Zbl 0271.62041 [101] Peskun, P. H. (1981). Guidelines for choosing the transition matrix in Monte Carlo methods using Markov chains. J. Comput. Phys. 40 327-344. · Zbl 0452.65003 [102] Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. In Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995) 9 223-252. · Zbl 0859.60067 [103] Qian, W. and Titterington, D. M. (1990). Parameter estimation for hidden Gibbs chains. Statist. Probab. Lett. 10 49-58. · Zbl 0698.62086 [104] Raftery, A. and Banfield, J. (1991). Stopping the Gibbs sampler, the use of morphology, and other issues in spatial statistics. Ann. Inst. Statist. Math. 43 32-43. [105] Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. Roy. Statist. Soc. Ser. B 59 731-792. JSTOR: · Zbl 0891.62020 [106] Ripley, B. D. (1987). Stochastic Simulation . Wiley, New York. · Zbl 0613.65006 [107] Robert, C. P. (1995). Convergence control methods for Markov chain Monte Carlo algorithms. Statist. Sci. 10 231-253. · Zbl 0955.60526 [108] Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods , 2nd ed. Springer, New York. · Zbl 1096.62003 [109] Roberts, G. O. and Rosenthal, J. S. (1999). Convergence of slice sampler Markov chains. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 643-660. JSTOR: · Zbl 0929.62098 [110] Roberts, G. O. and Rosenthal, J. S. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44 458-475. · Zbl 1137.62015 [111] Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7 110-120. · Zbl 0876.60015 [112] Rosenbluth, M. and Rosenbluth, A. (1955). Monte Carlo calculation of the average extension of molecular chains. J. Chem. Phys. 23 356-359. [113] Rosenthal, J. S. (1995). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 558-566. JSTOR: · Zbl 0824.60077 [114] Rubin, D. (1978). Multiple imputation in sample surveys: A phenomenological Bayesian approach to nonresponse. In Imputation and Editing of Faulty or Missing Survey Data . U.S. Department of Commerce, Washington, DC. [115] Smith, A. F. M. and Gelfand, A. E. (1992). Bayesian statistics without tears: A sampling-resampling perspective. Amer. Statist. 46 84-88. JSTOR: · Zbl 04510712 [116] Stephens, D. A. (1994). Bayesian retrospective multiple-changepoint identification. Appl. Statist. 43 159-178. · Zbl 0825.62412 [117] Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. Ann. Statist. 28 40-74. · Zbl 1106.62316 [118] Stephens, D. A. and Smith, A. F. M. (1993). Bayesian inference in multipoint gene mapping. Ann. Hum. Genetics 57 65-82. [119] Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc. 82 528-550. JSTOR: · Zbl 0619.62029 [120] Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22 1701-1786. · Zbl 0829.62080 [121] Titterington, D. and Cox, D. R. (2001). Biometrika : One Hundred Years . Oxford Univ. Press, Oxford. JSTOR: · Zbl 1073.62500 [122] Wakefield, J., Smith, A., Racine-Poon, A. and Gelfand, A. (1994). Bayesian analysis of linear and non-linear population models using the Gibbs sampler. Appl. Statist. 43 201-222. · Zbl 0825.62410 [123] Wang, C. S., Rutledge, J. J. and Gianola, D. (1993). Marginal inferences about variance-components in a mixed linear model using Gibbs sampling. Gen. Sel. Evol. 25 41-62. [124] Wang, C. S., Rutledge, J. J. and Gianola, D. (1994). Bayesian analysis of mixed limear models via Gibbs sampling with an application to litter size in Iberian pigs. Gen. Sel. Evol. 26 91-115. [125] Wei, G. and Tanner, M. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithm. J. Amer. Statist. Assoc. 85 699-704. [126] Zeger, S. L. and Karim, M. R. (1991). Generalized linear models with random effects; a Gibbs sampling approach. J. Amer. Statist. Assoc. 86 79-86. JSTOR: This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.