zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Iterative algorithms for solving a class of complex conjugate and transpose matrix equations. (English) Zbl 1222.65041
The authors consider a class of complex conjugate and transpose matrix equations $$\sum_{\ell=1}^{s_1}A_\ell XB_\ell+\sum_{\ell=1}^{s_2}C_\ell \overline XD_\ell+ \sum_{\ell=1}^{s_3}G_\ell X^TH_\ell+\sum_{\ell=1}^{s_4}M_\ell X^HN_\ell=F$$ in the unknown matrix $X\in{\mathbb C}^{r\times s}$, which include equations of the form $AXB+CXD=F$, the normal Sylvester-conjugate matrix equations $AX-\overline X B=C$, $X-A\overline XB=C$, and the real matrix equation $AXB+CX^TD=F$. This kind of matrices are investigated to obtain a unified method for solving many complex matrix equations and to obtain insightful conclusions for some special matrices. By applying the hierarchical identification principle, an iterative algorithm is developed to solve such equations. With the aid of the real representation of a complex matrix, an easily computed sufficient condition is established to guarantee that the proposed algorithm is convergent for an arbitrary initial matrix in terms of the real representation of the coefficient matrices.

65F30Other matrix algorithms
15A24Matrix equations and identities
65F10Iterative methods for linear systems
Full Text: DOI
[1] J.H. Bevis, F.J. Hall, R.E. Hartwing, Consimilarity and the matrix equation AX‾ - XB=C, In Current trends in matrix theory (Auburn, Ala., 1986), pp.51 -- 64. North-Holland, New York, 1987.
[2] Horn, R. A.; Johnson, C. R.: Matrix analysis, (1990) · Zbl 0704.15002
[3] Huang, L.: Consimilarity of quaternion matrices and complex matrices, Linear algebra appl. 331, 21-30 (2001) · Zbl 0982.15019 · doi:10.1016/S0024-3795(01)00266-X
[4] Jiang, T.; Cheng, X.; Chen, L.: An algebraic relation between consimilarity and similarity of complex matrices and its applications, J. phys. A math. Gen. 39, 9215-9222 (2006) · Zbl 1106.15008 · doi:10.1088/0305-4470/39/29/014
[5] Bevis, J. H.; Hall, F. J.; Hartwig, R. E.: The matrix equation AX‾-XB=C and its special cases, SIAM J. Matrix anal. Appl. 9, No. 3, 348-359 (1988) · Zbl 0655.15013
[6] Wu, A. G.; Duan, G. R.; Yu, H. H.: On solutions of XF - AX=C and XF-AX‾=C, Appl. math. Appl. 182, No. 2, 932-941 (2006) · Zbl 1112.15018
[7] Jiang, T.; Wei, M.: On solutions of the matrix equations X - AXB=C and X-AX‾B=C, Linear algebra appl. 367, 225-233 (2003) · Zbl 1019.15002
[8] Wu, A. G.; Feng, G.; Hu, J.; Duan, G. R.: Closed-form solutions to the nonhomogeneous yakubovich-conjugate matrix equation, Appl. math. Appl. 214, 442-450 (2009) · Zbl 1176.15021 · doi:10.1016/j.amc.2009.04.011
[9] Wu, A. G.; Feng, G.; Duan, G. R.; Wu, W. J.: Closed-form solutions to Sylvester-conjugate matrix equations, Comput. math. Appl. (2010) · Zbl 1198.15013
[10] Ding, F.; Chen, T.: Gradient based iterative algorithms for solving a class of matrix equations, IEEE trans. Autom. control 50, No. 8, 1216-1221 (2005)
[11] Wang, L. Y.; Xie, L.; Wang, X. F.: The residual based interactive stochastic gradient algorithms for controlled moving average models, Appl. math. Comput. 211, No. 2, 442-449 (2009) · Zbl 1162.93037 · doi:10.1016/j.amc.2009.01.069
[12] Liu, Y. J.; Wang, D. Q.; Ding, F.: Least-squares based iterative algorithms for identifying box-Jenkins models with finite measurement data, Digital signal proces. 20, No. 5, 1458-1467 (2010)
[13] Liu, Y. J.; Xiao, Y. S.; Zhao, X. L.: Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model, Appl. math. Comput. 215, No. 4, 1477-1483 (2009) · Zbl 1177.65095 · doi:10.1016/j.amc.2009.07.012
[14] Liu, Y. J.; Yu, L.; Ding, F.: Multi-innovation extended stochastic gradient algorithm and its performance analysis, Circuits syst. Signal proces. 29, No. 4, 649-667 (2010) · Zbl 1196.94026 · doi:10.1007/s00034-010-9174-8
[15] Ding, F.; Ding, J.: Least squares parameter estimation with irregularly missing data, Int. J. Adapt. control signal proces. 24, No. 7, 540-553 (2010) · Zbl 1200.93130 · doi:10.1002/acs.1141
[16] Liu, Y. J.; Sheng, J.; Ding, R. F.: Convergence of stochastic estimation gradient algorithm for multivariable ARX-like systems, Comput. math. Appl. 59, No. 8, 2615-2627 (2010) · Zbl 1193.60057 · doi:10.1016/j.camwa.2010.01.030
[17] Shi, Y.; Ding, F.; Chen, T.: Multirate crosstalk identification in xdsl systems, IEEE trans. Commun. 54, No. 10, 1878-1886 (2006)
[18] Shi, Y.; Ding, F.; Chen, T.: 2-norm based recursive design of transmultiplexers with designable filter length, Circuits syst. Signal proces. 25, No. 4, 447-462 (2006) · Zbl 1130.94312 · doi:10.1007/s00034-004-1029-8
[19] Ding, F.; Liu, P. X.; Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. math. Comput. 197, 41-50 (2008) · Zbl 1143.65035 · doi:10.1016/j.amc.2007.07.040
[20] Xie, L.; Liu, Y. J.; Yang, H. Z.: Gradient based and least squares based iterative algorithms for matrix equations AXB+CXTD=F, Appl. math. Comput. 217, No. 5, 2191-2199 (2010) · Zbl 1210.65097 · doi:10.1016/j.amc.2010.07.019
[21] Xie, L.; Ding, J.; Ding, F.: Gradient based iterative solutions for general linear matrix equations, Comput. math. Appl. 58, No. 7, 1441-1448 (2009) · Zbl 1189.65083 · doi:10.1016/j.camwa.2009.06.047
[22] Wang, M.; Feng, Y.: An iterative algorithm for solving a class of matrix equations, J. control theory appl. 7, No. 1, 68-72 (2009)
[23] Hou, J. J.; Peng, Z. Y.; Zhang, X. L.: An iterative method for the least squares symmetric solution of matrix equation AXB=C, Numer. algor. 42, 181-192 (2006) · Zbl 1122.65038 · doi:10.1007/s11075-006-9037-3
[24] Peng, Z. Y.: An iterative method for the least squares symmetric solution of the linear matrix equation AXB=C, Appl. math. Comput. 170, 711-723 (2005) · Zbl 1081.65039 · doi:10.1016/j.amc.2004.12.032
[25] Zhou, B.; Duan, G. R.; Li, Z. Y.: Gradient based iterative algorithm for solving coupled matrix equations, Syst. control lett. 58, 327-333 (2009) · Zbl 1159.93323 · doi:10.1016/j.sysconle.2008.12.004
[26] Ding, F.; Chen, T.: On iterative solutions of general coupled matrix equations, SIAM J. Control optimiz. 44, No. 6, 2269-2284 (2006) · Zbl 1115.65035 · doi:10.1137/S0363012904441350
[27] Ding, F.; Chen, T.: Iterative least squares solutions of coupled Sylvester matrix equations, Syst. control lett. 54, No. 2, 95-107 (2005) · Zbl 1129.65306 · doi:10.1016/j.sysconle.2004.06.008
[28] Ding, F.; Chen, T.: Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica 41, No. 2, 315-325 (2005) · Zbl 1073.93012 · doi:10.1016/j.automatica.2004.10.010
[29] Ding, F.; Chen, T.: Hierarchical least squares identification methods for multivariable systems, IEEE trans. Autom. control 50, No. 3, 397-402 (2005)
[30] Ding, F.; Chen, T.: Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE trans. Circuits. syst. I regular papers 52, No. 6, 1179-1187 (2005)
[31] Ding, F.; Qiu, L.; Chen, T.: Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica 45, No. 2, 324-332 (2009) · Zbl 1158.93365 · doi:10.1016/j.automatica.2008.08.007
[32] Y.J. Liu, L. Xie et al, An auxiliary model based recursive least squares parameter estimation algorithm for non-uniformly sampled multi-rate systems, Proceedings of the Institution of Mechanical Engineers, Part I: J. Syst. Control Eng. 223(4) (2009) 445 -- 454.
[33] Ding, J.; Liu, Y. J.; Ding, F.: Iterative solutions to matrix equations of form aixbi=Fi, Comput. math. Appl. 59, No. 11, 3500-3507 (2010) · Zbl 1197.15009 · doi:10.1016/j.camwa.2010.03.041
[34] Wu, A. G.; Zeng, X.; Duan, G. R.; Wu, W. J.: Iterative solutions to the extended Sylvester-conjugate matrix equations, Appl. math. Comput. 217, No. 1, 130-142 (2010) · Zbl 1223.65032 · doi:10.1016/j.amc.2010.05.029
[35] Wu, A. G.; Feng, G.; Duan, G. R.; Wu, W. J.: Iterative solutions to coupled Sylvester-conjugate matrix equations, Comput. math. Appl. 60, No. 1, 54-66 (2010) · Zbl 1198.65083 · doi:10.1016/j.camwa.2010.04.029
[36] Wu, A. G.; Wang, H. Q.; Duan, G. R.: On matrix equations X - AXF=C and X-AX‾F=C, J. comput. Appl. math. 230, No. 2, 690-698 (2009) · Zbl 05580666