Liao, Shijun An optimal homotopy-analysis approach for strongly nonlinear differential equations. (English) Zbl 1222.65088 Commun. Nonlinear Sci. Numer. Simul. 15, No. 8, 2003-2016 (2010). Summary: An optimal homotopy-analysis approach is described by means of the nonlinear Blasius equation as an example. This optimal approach contains at most three convergence-control parameters and is computationally rather efficient. A new kind of averaged residual error is defined, which can be used to find the optimal convergence-control parameters much more efficiently. It is found that all optimal homotopy-analysis approaches greatly accelerate the convergence of series solution. And the optimal approaches with one or two unknown convergence-control parameters are strongly suggested. This optimal approach has general meanings and can be used to get fast convergent series solutions of different types of equations with strong nonlinearity. Cited in 2 ReviewsCited in 162 Documents MSC: 65L99 Numerical methods for ordinary differential equations 34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc. 34A45 Theoretical approximation of solutions to ordinary differential equations Keywords:optimal homotopy-analysis method; nonlinear; analytic approximation; series solution PDF BibTeX XML Cite \textit{S. Liao}, Commun. Nonlinear Sci. Numer. Simul. 15, No. 8, 2003--2016 (2010; Zbl 1222.65088) Full Text: DOI References: [1] Lindstedt, A., Über die Integration einer für die Strörungstheorie wichtigen Differentialgleichung, Astron Nach, 103, 211-220 (1882) · JFM 14.0926.02 [2] Cole, J. D., Perturbation methods in applied mathematics (1968), Blaisdell Publishing Company: Blaisdell Publishing Company Waltham, Massachusetts · Zbl 0162.12602 [3] Von Dyke, M., Perturbation methods in fluid mechanics (1975), The Parabolic Press: The Parabolic Press Stanford, California [4] Murdock, J. A., Perturbations: theory and methods (1991), John Wiley & Sons: John Wiley & Sons New York · Zbl 0810.34047 [5] Kevorkian, J.; Cole, J. D., Multiple scales and singular perturbation methods. Multiple scales and singular perturbation methods, Applied mathematical sciences, vol. 114 (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0846.34001 [6] Nayfeh, A. H., Perturbation methods (2000), John Wiley & Sons: John Wiley & Sons New York [7] Lyapunov, A. M., General problem on stability of motion (1992), Taylor & Francis: Taylor & Francis London, [English translation] · Zbl 0786.70001 [9] Awrejcewicz, J.; Andrianov, I. V.; Manevitch, L. I., Asymptotic approaches in nonlinear dynamics (1998), Springer-Verlag: Springer-Verlag Berlin · Zbl 0910.70001 [10] Adomian, G., Nonlinear stochastic differential equations, J Math Anal Appl, 55, 441-452 (1976) · Zbl 0351.60053 [11] Adomian, G.; Adomian, G. E., A global method for solution of complex systems, Math Model, 5, 521-568 (1984) · Zbl 0556.93005 [12] Cherruault, Y., Convergence of adomian’s method, Kyberneters, 8, 2, 31-38 (1988) · Zbl 0697.65051 [13] Adomian, G., A review of the decomposition method and some recent results for nonlinear equations, Comp Math Appl, 21, 101-127 (1991) · Zbl 0732.35003 [14] Adomian, G., Solving frontier problems of physics: the decomposition method (1994), Kluwer Academic Publishers.: Kluwer Academic Publishers. Boston and London · Zbl 0802.65122 [15] Rach, R., A new definition of adomian polymonial, Kybernetes, 37, 910-955 (2008) · Zbl 1176.33023 [17] Hilton, P. J., An introduction to homotopy theory (1953), Cambridge University Press · Zbl 0051.40302 [18] Sen, S., Topology and geometry for physicists (1983), Academic Press: Academic Press Florida · Zbl 0529.53001 [19] Liao, S. J., An explicit, totally analytic approximation of Blasius viscous flow problems, Int J Non-Linear Mech, 34, 4, 759-778 (1999) · Zbl 1342.74180 [20] Liao, S. J., Beyond perturbation: introduction to the homotopy analysis method (2003), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press Boca Raton [21] Liao, S. J.; Tan, Y., A general approach to obtain series solutions of nonlinear differential equations, Stud Appl Math, 119, 297-355 (2007) [22] Liao, S. J., A kind of approximate solution technique which does not depend upon small parameters (II): an application in fluid mechanics, Int J Non-Linear Mech, 32, 815-822 (1997) · Zbl 1031.76542 [23] Liang, S. X.; Jeffrey, D. J., Comparison of homotopy analysis method and homotopy perturbation method through an evaluation equation, Commun Nonlinear Sci Numer Simul, 14, 4057-4064 (2009) · Zbl 1221.65281 [24] Liao, S. J., On the relationship between the homotopy analysis method and Euler transform, Commun Nonlinear Sci Numer Simul., 15, 1421-1431 (2010) · Zbl 1221.65206 [25] Liao, S. J., Notes on the homotopy analysis method: some definitions and theorems, Commun Nonlinear Sci Numer Simul, 14, 983-997 (2009) · Zbl 1221.65126 [26] Liao, S. J., On the homotopy analysis method for nonlinear problems, Appl Math Comput, 147, 499-513 (2004) · Zbl 1086.35005 [28] Liao, S. J., Series solutions of unsteady boundary-layer flows over a stretching flat plate, Stud Appl Math, 117, 3, 2529-2539 (2006) · Zbl 1189.76142 [29] Liao, S. J., A general approach to get series solution of non-similarity boundary layer flows, Commun Nonlinear Sci Numer Simul, 14, 2144-2159 (2009) · Zbl 1221.76068 [30] Yang, C.; Liao, S. J., On the explicit, purely analytic solution of Von Kármán swirling viscous flow, Commun Nonlinear Sci Numer Simul, 11, 1, 83-139 (2006) · Zbl 1075.35059 [31] He, J. H., Homotopy perturbation technique, Comput Methods Appl Mech Eng, 178, 257-262 (1999) · Zbl 0956.70017 [32] Sajid, M.; Hayat, T., Comparison of HAM and HPM methods for nonlinear heat conduction and convection equations, Nonlinear Anal: Real World Appl, 9, 2296-2301 (2008) · Zbl 1156.76436 [33] Abbasbandy, S., The application of the homotopy analysis method to nonlinear equations arising in heat transfer, Phys Lett A, 360, 109-113 (2006) · Zbl 1236.80010 [34] Van Gorder, R. A.; Vajravelu, K., Analytic and numerical solutions to the Lane-Emden equation, Phys Lett A, 372, 6060-6065 (2008) · Zbl 1223.85004 [35] Molabahrami, A.; Khani, F., The homotopy analysis method to solve the Burgers-Huxley equation, Nonlinear Anal B: Real World Appl, 10, 589-600 (2009) · Zbl 1167.35483 [36] Alizadeh-Pahlavan, A.; Aliakbar, V.; Vakili-Farahani, F.; Sadeghy, K., MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method, Commun Nonlinear Sci Numer Simul, 14, 473-488 (2009) [37] Yabushita, K.; Yamashita, M.; Tsuboi, K., An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J Phys A, 40, 8403-8416 (2007) · Zbl 1331.70041 [38] Zhu, S. P., A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield, ANZIAM J, 47, 477-494 (2006) · Zbl 1147.91336 [39] Zhu, S. P., An exact and explicit solution for the valuation of American put options, Quant Finan, 6, 229-242 (2006) · Zbl 1136.91468 [40] Zou, L.; Zong, Z.; Wang, Z.; He, L., Solving the discrete KdV equation with homotopy analysis method, Phys Lett A, 370, 287-294 (2007) · Zbl 1209.65122 [41] Allan, F. M., Derivation of the adomian decomposition method using the homotopy analysis method, Appl Math Comput, 190, 6-14 (2007) · Zbl 1125.65063 [42] Song, H.; Tao, L., Homotopy analysis of 1D unsteady, nonlinear groundwater flow through porous media, J Coastal Res, 50, 292-295 (2007) [43] Abbasbandy, S., Solitary wave equations to the Kuramoto-Sivashinsky equation by means of the homotopy analysis method, Nonlinear Dyn, 52, 35-40 (2008) · Zbl 1173.35646 [44] Akyildiz, F. T.; Vajravelu, K., Magnetohydrodynamic flow of a viscoelastic fluid, Phys Lett A, 372, 3380-3384 (2008) · Zbl 1220.76073 [45] Abbasbandy, S.; Parkes, E. J., Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method, Chaos Solitons Fract, 36, 581-591 (2008) · Zbl 1139.76013 [46] Abbas, Z.; Wang, Y.; Hayat, T.; Oberlack, M., Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface, Int J Nonlinear Mech, 43, 783-793 (2008) · Zbl 1203.76169 [47] Wu, Y.; Cheung, K. F., Explicit solution to the exact Riemann problems and application in nonlinear shallow water equations, Int J Numer Methods Fluids, 57, 1649-1668 (2008) · Zbl 1210.76033 [48] Wu, Y. Y.; Cheung, K. F., Homotopy solution for nonlinear differential equations in wave propagation problems, Wave Motion, 46, 1-14 (2009) · Zbl 1231.65138 [49] Liu, Y. P.; Li, Z. B., The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation, Chaos Solitons Fract, 39, 1-8 (2009) · Zbl 1197.65166 [51] Liao, S. J., A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int J Heat Mass Transfer, 48, 12, 2529-2539 (2005) · Zbl 1189.76142 [52] Liao, S. J.; Magyari, E., Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones, ZAMP, 57, 5, 777-792 (2006) · Zbl 1101.76056 [53] Liao, S. J., A new branch of solutions of boundary-layer flows over a permeable stretching plate, Int J Non-Linear Mech, 42, 819-830 (2007) · Zbl 1200.76046 [54] Marinca, V.; Herisanu, N.; Nemes, I., Optimal homotopy asymptotic method with application to thin film flow, Central Eur J Phys, 6, 648-653 (2008) [55] Marinca, V.; Herisanu, N., Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, Int Commun Heat Mass Transfer, 35, 710-715 (2008) [56] Marinca, V.; Herisanu, N., An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate, Appl Math Lett, 22, 245-251 (2009) · Zbl 1163.76318 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.