zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An optimal homotopy-analysis approach for strongly nonlinear differential equations. (English) Zbl 1222.65088
Summary: An optimal homotopy-analysis approach is described by means of the nonlinear Blasius equation as an example. This optimal approach contains at most three convergence-control parameters and is computationally rather efficient. A new kind of averaged residual error is defined, which can be used to find the optimal convergence-control parameters much more efficiently. It is found that all optimal homotopy-analysis approaches greatly accelerate the convergence of series solution. And the optimal approaches with one or two unknown convergence-control parameters are strongly suggested. This optimal approach has general meanings and can be used to get fast convergent series solutions of different types of equations with strong nonlinearity.

65L99Numerical methods for ODE
34A25Analytical theory of ODE (series, transformations, transforms, operational calculus, etc.)
34A45Theoretical approximation of solutions of ODE
Full Text: DOI
[1] Lindstedt, A.: Über die integration einer für die strörungstheorie wichtigen differentialgleichung, Astron nach 103, 211-220 (1882) · Zbl 14.0926.02 · doi:10.1002/asna.18821031404
[2] Cole, J. D.: Perturbation methods in applied mathematics, (1968) · Zbl 0162.12602
[3] Von Dyke, M.: Perturbation methods in fluid mechanics, (1975) · Zbl 0329.76002
[4] Murdock, J. A.: Perturbations: theory and methods, (1991) · Zbl 0810.34047
[5] Kevorkian, J.; Cole, J. D.: Multiple scales and singular perturbation methods, Applied mathematical sciences 114 (1995) · Zbl 0846.34001
[6] Nayfeh, A. H.: Perturbation methods, (2000) · Zbl 0995.35001
[7] Lyapunov, A. M.: General problem on stability of motion, (1992) · Zbl 0786.70001
[8] Karmishin, AV, Zhukov, AT, Kolosov, VG. Methods of dynamics calculation and testing for thin-walled structures. Mashinostroyenie, Moscow; 1990 [in Russian].
[9] Awrejcewicz, J.; Andrianov, I. V.; Manevitch, L. I.: Asymptotic approaches in nonlinear dynamics, (1998) · Zbl 0910.70001
[10] Adomian, G.: Nonlinear stochastic differential equations, J math anal appl 55, 441-452 (1976) · Zbl 0351.60053 · doi:10.1016/0022-247X(76)90174-8
[11] Adomian, G.; Adomian, G. E.: A global method for solution of complex systems, Math model 5, 521-568 (1984) · Zbl 0556.93005 · doi:10.1016/0270-0255(84)90004-6
[12] Cherruault, Y.: Convergence of Adomian’s method, Kyberneters 8, No. 2, 31-38 (1988) · Zbl 0697.65051
[13] Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations, Comp math appl 21, 101-127 (1991) · Zbl 0732.35003 · doi:10.1016/0898-1221(91)90220-X
[14] Adomian, G.: Solving frontier problems of physics: the decomposition method, (1994) · Zbl 0802.65122
[15] Rach, R.: A new definition of Adomian polymonial, Kybernetes 37, 910-955 (2008) · Zbl 1176.33023 · doi:10.1108/03684920810884342
[16] Liao, SJ. The proposed homotopy analysis technique for the solution of nonlinear problems. PhD thesis, Shanghai Jiao Tong University; 1992.
[17] Hilton, P. J.: An introduction to homotopy theory, (1953) · Zbl 0051.40302
[18] Sen, S.: Topology and geometry for physicists, (1983) · Zbl 0529.53001
[19] Liao, S. J.: An explicit, totally analytic approximation of Blasius viscous flow problems, Int J non-linear mech 34, No. 4, 759-778 (1999) · Zbl 05137896
[20] Liao, S. J.: Beyond perturbation: introduction to the homotopy analysis method, (2003)
[21] Liao, S. J.; Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations, Stud appl math 119, 297-355 (2007)
[22] Liao, S. J.: A kind of approximate solution technique which does not depend upon small parameters (II): an application in fluid mechanics, Int J non-linear mech 32, 815-822 (1997) · Zbl 1031.76542 · doi:10.1016/S0020-7462(96)00101-1
[23] Liang, S. X.; Jeffrey, D. J.: Comparison of homotopy analysis method and homotopy perturbation method through an evaluation equation, Commun nonlinear sci numer simul 14, 4057-4064 (2009) · Zbl 1221.65281 · doi:10.1016/j.cnsns.2009.02.016
[24] Liao, S. J.: On the relationship between the homotopy analysis method and Euler transform, Commun nonlinear sci numer simul. 15, 1421-1431 (2010) · Zbl 1221.65206 · doi:10.1016/j.cnsns.2009.06.008
[25] Liao, S. J.: Notes on the homotopy analysis method: some definitions and theorems, Commun nonlinear sci numer simul 14, 983-997 (2009) · Zbl 1221.65126 · doi:10.1016/j.cnsns.2008.04.013
[26] Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl math comput 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[27] Liao, SJ. Series solution of deformation of a beam with arbitrary cross section under an axial load. ANZIAM J. online. · Zbl 1196.34027 · doi:10.1017/S1446181109000339
[28] Liao, S. J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate, Stud appl math 117, No. 3, 2529-2539 (2006) · Zbl 1145.76352 · doi:10.1111/j.1467-9590.2006.00354.x
[29] Liao, S. J.: A general approach to get series solution of non-similarity boundary layer flows, Commun nonlinear sci numer simul 14, 2144-2159 (2009) · Zbl 1221.76068 · doi:10.1016/j.cnsns.2008.06.013
[30] Yang, C.; Liao, S. J.: On the explicit, purely analytic solution of von kármán swirling viscous flow, Commun nonlinear sci numer simul 11, No. 1, 83-139 (2006) · Zbl 1075.35059 · doi:10.1016/j.cnsns.2004.05.006
[31] He, J. H.: Homotopy perturbation technique, Comput methods appl mech eng 178, 257-262 (1999) · Zbl 0956.70017
[32] Sajid, M.; Hayat, T.: Comparison of HAM and HPM methods for nonlinear heat conduction and convection equations, Nonlinear anal: real world appl 9, 2296-2301 (2008) · Zbl 1156.76436 · doi:10.1016/j.nonrwa.2007.08.007
[33] Abbasbandy, S.: The application of the homotopy analysis method to nonlinear equations arising in heat transfer, Phys lett A 360, 109-113 (2006) · Zbl 1236.80010
[34] Van Gorder, R. A.; Vajravelu, K.: Analytic and numerical solutions to the Lane-Emden equation, Phys lett A 372, 6060-6065 (2008) · Zbl 1223.85004 · doi:10.1016/j.physleta.2008.08.002
[35] Molabahrami, A.; Khani, F.: The homotopy analysis method to solve the Burgers -- Huxley equation, Nonlinear anal B: real world appl 10, 589-600 (2009) · Zbl 1167.35483 · doi:10.1016/j.nonrwa.2007.10.014
[36] Alizadeh-Pahlavan, A.; Aliakbar, V.; Vakili-Farahani, F.; Sadeghy, K.: MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method, Commun nonlinear sci numer simul 14, 473-488 (2009)
[37] Yabushita, K.; Yamashita, M.; Tsuboi, K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J phys A 40, 8403-8416 (2007) · Zbl 05178236
[38] Zhu, S. P.: A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield, Anziam j 47, 477-494 (2006) · Zbl 1147.91336 · doi:10.1017/S1446181100010087 · http://www.austms.org.au/Publ/ANZIAM/V47P4/2378.html
[39] Zhu, S. P.: An exact and explicit solution for the valuation of American put options, Quant finan 6, 229-242 (2006) · Zbl 1136.91468 · doi:10.1080/14697680600699811
[40] Zou, L.; Zong, Z.; Wang, Z.; He, L.: Solving the discrete KdV equation with homotopy analysis method, Phys lett A 370, 287-294 (2007) · Zbl 1209.65122 · doi:10.1016/j.physleta.2007.05.068
[41] Allan, F. M.: Derivation of the Adomian decomposition method using the homotopy analysis method, Appl math comput 190, 6-14 (2007) · Zbl 1125.65063 · doi:10.1016/j.amc.2006.12.074
[42] Song, H.; Tao, L.: Homotopy analysis of 1D unsteady, nonlinear groundwater flow through porous media, J coastal res 50, 292-295 (2007)
[43] Abbasbandy, S.: Solitary wave equations to the Kuramoto -- Sivashinsky equation by means of the homotopy analysis method, Nonlinear dyn 52, 35-40 (2008) · Zbl 1173.35646 · doi:10.1007/s11071-007-9255-9
[44] Akyildiz, F. T.; Vajravelu, K.: Magnetohydrodynamic flow of a viscoelastic fluid, Phys lett A 372, 3380-3384 (2008) · Zbl 1220.76073 · doi:10.1016/j.physleta.2008.01.073
[45] Abbasbandy, S.; Parkes, E. J.: Solitary smooth hump solutions of the Camassa -- Holm equation by means of the homotopy analysis method, Chaos solitons fract 36, 581-591 (2008) · Zbl 1139.76013 · doi:10.1016/j.chaos.2007.10.034
[46] Abbas, Z.; Wang, Y.; Hayat, T.; Oberlack, M.: Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface, Int J nonlinear mech 43, 783-793 (2008) · Zbl 1203.76169 · doi:10.1016/j.ijnonlinmec.2008.04.009
[47] Wu, Y.; Cheung, K. F.: Explicit solution to the exact Riemann problems and application in nonlinear shallow water equations, Int J numer methods fluids 57, 1649-1668 (2008) · Zbl 1210.76033 · doi:10.1002/fld.1696
[48] Wu, Y. Y.; Cheung, K. F.: Homotopy solution for nonlinear differential equations in wave propagation problems, Wave motion 46, 1-14 (2009) · Zbl 1231.65138 · doi:10.1016/j.wavemoti.2008.07.002
[49] Liu, Y. P.; Li, Z. B.: The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation, Chaos solitons fract 39, 1-8 (2009) · Zbl 1197.65166 · doi:10.1016/j.chaos.2007.01.148
[50] Zhao, J, Wong, HY. A closed-form solution to American options under general diffusion processes. Quant Finan. online. · Zbl 1278.91171
[51] Liao, S. J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int J heat mass transfer 48, No. 12, 2529-2539 (2005) · Zbl 1189.76142 · doi:10.1016/j.ijheatmasstransfer.2005.01.005
[52] Liao, S. J.; Magyari, E.: Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones, Zamp 57, No. 5, 777-792 (2006) · Zbl 1101.76056 · doi:10.1007/s00033-006-0061-x
[53] Liao, S. J.: A new branch of solutions of boundary-layer flows over a permeable stretching plate, Int J non-linear mech 42, 819-830 (2007) · Zbl 1200.76046 · doi:10.1016/j.ijnonlinmec.2007.03.007
[54] Marinca, V.; Herisanu, N.; Nemes, I.: Optimal homotopy asymptotic method with application to thin film flow, Central eur J phys 6, 648-653 (2008)
[55] Marinca, V.; Herisanu, N.: Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, Int commun heat mass transfer 35, 710-715 (2008)
[56] Marinca, V.; Herisanu, N.: An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate, Appl math lett 22, 245-251 (2009) · Zbl 1163.76318 · doi:10.1016/j.aml.2008.03.019
[57] Niu, Z., Wang, C. A one-step optimal homotopy analysis method for nonlinear differential equations. Commun Nonlinear Sci Numer Simul. Online. · Zbl 1222.65093 · doi:10.1016/j.cnsns.2009.12.026