×

Modified step variational iteration method for solving fractional biochemical reaction model. (English) Zbl 1222.65111

Summary: A new method called the modification of step variational iteration method (MoSVIM) is introduced and used to solve the fractional biochemical reaction model. The MoSVIM uses general Lagrange multipliers for construction of the correction functional for the problems, and it runs by step approach, which is to divide the interval into subintervals with time step, and the solutions are obtained at each subinterval as well adopting a nonzero auxiliary parameter \(\hbar\) to control the convergence region of series’ solutions. The MoSVIM yields an analytical solution of a rapidly convergent infinite power series with easily computable terms and produces a good approximate solution on enlarged intervals for solving the fractional biochemical reaction model. The accuracy of the results obtained is in a excellent agreement with the Adam Bashforth Moulton method.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
92E20 Classical flows, reactions, etc. in chemistry
35K57 Reaction-diffusion equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35C10 Series solutions to PDEs
35R11 Fractional partial differential equations

References:

[1] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[2] R. Gorenflo and F. Mainardi, “Fractional calculus: int and differential equations of fractional order,” in Fractals and Fractional Calculus, A. Carpinteri and F. Mainardi, Eds., 1997. · Zbl 1030.26004
[3] K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229-248, 2002. · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[4] K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamicss, vol. 29, no. 1-4, pp. 3-22, 2002. · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[5] C. Li and G. Peng, “Chaos in Chen’s system with a fractional order,” Chaos, Solitons & Fractals, vol. 22, no. 2, pp. 443-450, 2004. · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[6] S. S. Ray, “Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 1295-1306, 2009. · Zbl 1221.65284 · doi:10.1016/j.cnsns.2008.01.010
[7] O. Abdulaziz, I. Hashim, M. S. H. Chowdhury, and A. K. Zulkifle, “Assessment of decomposition method for linear and nonlinear fractional differential equations,” Far East Journal of Applied Mathematics, vol. 28, no. 1, pp. 95-112, 2007. · Zbl 1134.26300
[8] S. H. Hosseinnia, A. Ranjbar, and S. Momani, “Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part,” Computers & Mathematics with Applications, vol. 56, no. 12, pp. 3138-3149, 2008. · Zbl 1165.65375 · doi:10.1016/j.camwa.2008.07.002
[9] O. Abdulaziz, I. Hashim, and S. Momani, “Solving systems of fractional differential equations by homotopy-perturbation method,” Physics Letters A, vol. 372, no. 4, pp. 451-459, 2008. · Zbl 1217.81080 · doi:10.1016/j.physleta.2007.07.059
[10] L. Song and H. Zhang, “Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation,” Physics Letters A, vol. 367, no. 1-2, pp. 88-94, 2007. · Zbl 1209.65115 · doi:10.1016/j.physleta.2007.02.083
[11] A. S. Bataineh, A. K. Alomari, M. S. M. Noorani, I. Hashim, and R. Nazar, “Series solutions of systems of nonlinear fractional differential equations,” Acta Applicandae Mathematicae, vol. 105, no. 2, pp. 189-198, 2009. · Zbl 1187.34007 · doi:10.1007/s10440-008-9271-x
[12] A. K. Alomari, M. S. M. Noorani, and R. Nazar, “Explicit series solutions of some linear and nonlinear Schrodinger equations via the homotopy analysis method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 1196-1207, 2009. · Zbl 1221.35389 · doi:10.1016/j.cnsns.2008.01.008
[13] J. He, “Variational iteration method for delay differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 4, pp. 235-236, 1997. · Zbl 0924.34063 · doi:10.1016/S1007-5704(97)90008-3
[14] J. H. He, “A new approach to linear partial differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, pp. 230-235, 1997. · Zbl 0923.35046 · doi:10.1016/S1007-5704(97)90029-0
[15] J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57-68, 1998. · Zbl 0942.76077 · doi:10.1016/S0045-7825(98)00108-X
[16] J.-H. He and X.-H. Wu, “Variational iteration method: new development and applications,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 881-894, 2007. · Zbl 1141.65372 · doi:10.1016/j.camwa.2006.12.083
[17] J.-H. He, “The variational iteration method for eighth-order initial-boundary value problems,” Physica Scripta, vol. 76, no. 6, pp. 680-682, 2007. · Zbl 1134.34307 · doi:10.1088/0031-8949/76/6/016
[18] L. Song, Q. Wang, and H. Zhang, “Rational approximation solution of the fractional Sharma-Tasso-Olever equation,” Journal of Computational and Applied Mathematics, vol. 224, no. 1, pp. 210-218, 2009. · Zbl 1157.65074 · doi:10.1016/j.cam.2008.04.033
[19] R. Yulita Molliq, M. S. M. Noorani, I. Hashim, and R. R. Ahmad, “Approximate solutions of fractional Zakharov-Kuznetsov equations by VIM,” Journal of Computational and Applied Mathematics, vol. 233, no. 2, pp. 103-108, 2009. · Zbl 1173.65066 · doi:10.1016/j.cam.2009.03.010
[20] R. Yulita Molliq, M. S. M. Noorani, and I. Hashim, “Variational iteration method for fractional heat- and wave-like equations,” Nonlinear Analysis: Real World Applications, vol. 10, no. 3, pp. 1854-1869, 2009. · Zbl 1172.35302 · doi:10.1016/j.nonrwa.2008.02.026
[21] R. Yulita Molliq, M. S. M. Noorani, R.R. Ahmad, and A. K. Alomari, “A step variational iteration method for solving non chaotic and chaotic systems,” submitted. · Zbl 1291.65216
[22] A. K. Sen, “An application of the Adomian decomposition method to the transient behavior of a model biochemical reaction,” Journal of Mathematical Analysis and Applications, vol. 131, no. 1, pp. 232-245, 1988. · Zbl 0635.92007 · doi:10.1016/0022-247X(88)90202-8
[23] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent II,” Geophysical Journal of the Royal Astronomical Society, vol. 13, pp. 529-539, 1967.
[24] S. M. Goh, M. S. M. Noorani, and I. Hashim, “Introducing variational iteration method to a biochemical reaction model,” Nonlinear Analysis: Real World Applications, vol. 11, no. 4, pp. 2264-2272, 2010. · Zbl 1195.65093 · doi:10.1016/j.nonrwa.2009.06.015
[25] I. Hashim, M. S. H. Chowdhury, and S. Mawa, “On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model,” Chaos, Solitons & Fractals, vol. 36, no. 4, pp. 823-827, 2008. · Zbl 1210.65149 · doi:10.1016/j.chaos.2007.09.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.