Ma, Jun; Li, Fan; Huang, Long; Jin, Wu-Yin Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. (English) Zbl 1222.65136 Commun. Nonlinear Sci. Numer. Simul. 16, No. 9, 3770-3785 (2011). Summary: The two-parameter phase space in certain nonlinear system is investigated and the chaotic region of parameters are measured to show its chaotic properties. Within the chaotic parameter region, the complete synchronization, phase synchronization and parameters estimation are discussed in detail by using adaptive synchronization scheme and Lyapunov stability theory. Two changeable gain coefficients are introduced into the controllable positive Lyapunov function and thus the parameter observers. It is found that complete synchronization or phase synchronization occurs with different controllers being used though the parameter observers are the same. Phase synchronization is observed when a zero eigenvalue of the Jacobi matrix, which is composed of the errors of corresponding variables in the drive and driven chaotic systems. The optimized selection of controllers can induce transition of phase synchronization and complete synchronization. Cited in 39 Documents MSC: 65P20 Numerical chaos 93B05 Controllability 93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory 93C15 Control/observation systems governed by ordinary differential equations 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior Keywords:phase synchronization; complete synchronization; Jacobi matrix; parameter estimation; numerical examples; chaotic parameter region; Lyapunov stability; controllers; chaotic systems PDF BibTeX XML Cite \textit{J. Ma} et al., Commun. Nonlinear Sci. Numer. Simul. 16, No. 9, 3770--3785 (2011; Zbl 1222.65136) Full Text: DOI References: [1] Misra, J., Phase synchronization, Inf Process Lett, 38, 2, 101-105 (1991) · Zbl 0737.68032 [2] Pikovsky, A. S.; Rosenblum, M. G.; Osipov, G. V.; Kurths, J., Phase synchronization of chaotic oscillators by external driving, Physica D, 104, 3-4, 219-238 (1997) · Zbl 0898.70015 [3] Shuai, J. W.; Durand, D. M., Phase synchronization in two coupled chaotic neurons, Phys Lett A, 264, 4, 289-297 (1999) · Zbl 0949.37015 [4] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S., The synchronization of chaotic systems, Phys Report, 336, 1-101 (2002) · Zbl 0995.37022 [5] Ávila, G. M.R.; Guisset, J. L.; Deneubourg, J. L., Synchronization in light-controlled oscillators, Physica D, 182, 3-4, 254-273 (2003) · Zbl 1034.81556 [6] Perc, M.; Marhl, M., Sensitivity and flexibility of regular and chaotic calcium oscillations, Biophys Chem, 104, 509-522 (2003) [7] Perc, M.; Marhl, M., Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor, Phys Rev E, 70, 016204 (2004) [8] Belykh, V. N.; Osipov, G. V.; Kuckländer, N.; Blasius, B.; Kurths, J., Automatic control of phase synchronization in coupled complex oscillators, Physica D, 200, 1-2, 81-104 (2005) · Zbl 1066.34045 [9] Wu, D.; Jia, Y.; Yang, L. J.; Liu, Q.; Zhan, X., Phase synchronization and coherence resonance of stochastic calcium oscillations in coupled hepatocytes, Biophys Chem, 115, 1, 37-47 (2005) [10] Perc, M., Visualizing the attraction of strange attractors, Eur J Phys, 26, 579-587 (2005) [11] Perc, M., Nonlinear time series analysis of the human electrocardiogram, Eur J Phys, 26, 757-768 (2005) [12] Alatriste, F. R.; Mateos, J. L., Phase synchronization in tilted deterministic ratchets, Physica A, 372, 2, 263-271 (2006) [13] Nikulin, V. V.; Brismar, T., Phase synchronization between alpha and beta oscillations in the human electroencephalogram, Neuroscience, 137, 2, 647-657 (2006) [14] Wei, D. Q.; Luo, X. S., Adaptive robust control of chaotic oscillations in power system with excitation limits, Chin Phys B, 16, 11, 3244-3248 (2007) [15] Wei, D. Q.; Zhang, B., Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory, Chin Phys B, 18, 4, 1399-1403 (2009) [16] Liu, L.; Su, Z. C.; Liu, C. X., A new chaotic system and its circuit simulation, Acta Phys Sin, 56, 4, 1966-1970 (2007) · Zbl 1150.37339 [17] Miliou, A. N.; Antoniades, I. P.; Stavrinides, S. G.; Anagnostopoulos, A. N., Secure communication by chaotic synchronization: robustness under noisy conditions, Nonlinear Anal B, 8, 3, 1003-1012 (2007) · Zbl 1187.94007 [18] Denker, M.; Roux, S.; Timme, M.; Riehle, A.; Grün, S., Phase synchronization between LFP and spiking activity in motor cortex during movement preparation, Neurocomputer, 70, 10-12, 2096-2101 (2007) [19] Kim, C. S.; Riikonen, P.; Salakoski, T., Detecting biological associations between genes based on the theory of phase synchronization, Biosystems, 92, 2, 99-113 (2008) [20] Bob, P.; Palus, M.; Susta, M.; Glaslova, K., EEG phase synchronization in patients with paranoid schizophrenia, Neurosci Lett, 447, 1, 73-77 (2008) [21] Erjaee, G. H.; Momani, S., Phase synchronization in fractional differential chaotic systems, Phys Lett A, 372, 14, 2350-2354 (2008) · Zbl 1220.34004 [23] (Schöll, Eckehard; Schuster, Heinz Georg, Handbook of chaos control (2007), Wiley-VCH Verlag Gmbh) · Zbl 1130.93001 [24] (Sanjuan, Miguel A. F.; Grebogi, Celso, Recent progress in controlling chaos (2010), World Scientific: World Scientific Singapore) [25] Ma, J.; Ying, H. P.; Liu, Y.; Li, S. R., Development and transition of spiral wave in the coupled Hindmarsh-Rose neurons in two-dimensional space, Chin Phys B, 18, 1, 98-105 (2009) [26] Ma, J.; Zhang, A. H.; Tang, J.; Jin, W. Y., Collective behaviors of spiral wave in the networks of Hodgkin-Huxley neurons in presence of channel noise, J Biol Syst, 18, 1, 243-259 (2010) · Zbl 1342.92047 [27] Ma, J.; Yang, L. J.; Wu, Y.; Zhang, C. R., Spiral wave in small-world networks of Hodgkin-Huxley neurons, Commun Theor Phys, 54, 3, 583-588 (2010) [28] Wang, M. S.; Hou, Z. H.; Xin, H. W., Ordering spatiotemporal chaos in small-world neuron networks, ChemPhysChem, 7, 579 (2006) [29] Hou, Z. H.; Xin, H. W., Noise sustained spiral waves: effects of spatial and temporal memory, Phys Rev Lett, 89, 280601 (2002) [30] Nadkarni, S.; Jung, P., Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy?, Phys Rev Lett, 91, 26, 268101 (2003) [31] Wang, Q. Y.; Duan, Z. S.; Perc, M.; Chen, G. R., Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability, Europhys Lett, 83, 50008 (2008) [32] Wang, Q. Y.; Perc, M.; Chen, G. R., Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys Rev E, 80, 026206 (2009) [33] Perc, M., Stochastic resonance on excitable small-world networks via a pacemaker, Phys Rev E, 76, 066203 (2007) [34] Gosak, M.; Perc, M., Proximity to periodic windows in bifurcation diagrams as a gateway to coherence resonance in chaotic systems, Phys Rev E, 76, 037201 (2007) [35] Long, M.; Qiu, S. S.; Peng, F., Bi-directional secure communication based on discrete chaotic synchronization, Commun Theor Phys, 47, 6, 1076-1080 (2007) [36] Banerjee, S.; Chowdhury, A. R., Functional synchronization and its application to secure communications, Int J Modern Phys B, 23, 9, 2285-2295 (2009) · Zbl 1170.94324 [37] Irving, A. D.; Dewson, T., Volterra functional secure communication systems, Int J Bifur Chaos, 13, 1, 123-146 (2003) · Zbl 1064.94503 [38] Andrievsky, B., Adaptive synchronization methods for signal transmission on chaotic carriers, Math Comput Simul, 58, 4-6, 285-293 (2002) · Zbl 0995.65133 [39] Wang, Q. Y.; Lu, Q. S.; Wang, H. X., Transition to complete synchronization via nearly synchronization in two coupled chaotic neurons, Chin Phys, 14, 11, 2189-2195 (2005) [40] Shahverdiev, E. M.; Sivaprakasam, S.; Shore, K. A., Lag synchronization in time-delayed systems, Phys Lett A, 292, 6, 320-324 (2002) · Zbl 0979.37022 [41] Li, C. D.; Liao, X. F.; Wong, K. W., Lag synchronization of hyperchaos with application to secure communications, Chaos Solitons Fractals, 23, 1, 183-193 (2005) · Zbl 1068.94004 [42] Wang, Z. L.; Shi, X. R., Chaotic bursting lag synchronization of Hindmarsh-Rose system via a single controller, Appl Math Comput, 215, 3, 1091-1097 (2009) · Zbl 1205.37025 [43] Wang, L. P.; Yuan, Z. T.; Chen, X. H.; Zhou, Z. F., Lag synchronization of chaotic systems with parameter mismatches, Commun Nonlinear Sci Numer Simul, 16, 2, 987-992 (2011) · Zbl 1221.37226 [44] Yang, J. Z.; Hu, G., Three types of generalized synchronization, Phys Lett A, 361, 4-5, 332-335 (2007) · Zbl 1170.37313 [45] Fujisaka, H.; Yamada, T.; Kinoshita, G.; Kono, T., Chaotic phase synchronization and phase diffusion, Physica D, 205, 1-4, 41-47 (2005) · Zbl 1094.34023 [46] Ge, Z. M.; Chen, C. C., Phase synchronization of coupled chaotic multiple time scales systems, Chaos Solitons Fractals, 20, 3, 639-647 (2004) · Zbl 1069.34056 [47] Paluš, M., Detecting phase synchronization in noisy systems, Phys Lett A, 235, 4, 341-351 (1997), 10 · Zbl 1044.62507 [48] Follmann, R.; Macau, E. E.N.; Rosa, E., Detecting phase synchronization between coupled non-phase-coherent oscillators, Phys Lett A, 373, 25, 2146-2153 (2009) · Zbl 1229.34079 [49] Tsukamoto, N.; Fujisaka, H., Return map analysis of chaotic phase synchronization, Physica D, 233, 1, 32-38 (2007) · Zbl 1126.37019 [50] Casado, J. M., Synchronization of two Hodgkin-Huxley neurons due to internal noise, Phys Lett, A310, 5-6, 400-406 (2003) · Zbl 1017.92010 [51] Zhang, X. H.; Liao, X. F.; Li, C. D., Impulsive control, complete and lag synchronization of unified chaotic system with continuous periodic switch, Chaos Solitons Fractals, 26, 3, 845-854 (2005) · Zbl 1093.93025 [52] Shu, Y. L.; Zhang, A. B.; Tang, B. D., Switching among three different kinds of synchronization for delay chaotic systems, Chaos Solitons Fractals, 23, 2, 563-571 (2005) · Zbl 1061.93510 [53] Wang, Q. Y.; Lu, Q. S., Time delay enhanced synchronization and regularization in two coupled chaotic ML neurons, Chin Phys Lett, 22, 543-546 (2005) [54] Wang, Q. Y.; Duan, Z. S.; Feng, Z. S.; Chen, G. R.; Lu, Q. S., Synchronization transition in gap-junction-coupled leech neurons, Physica A, 387, 16-17, 4404-4410 (2008) [55] Wang, Q. Y.; Lu, Q. S.; Chen, G. R., Synchronization transition by synaptic delay in coupled fast spiking neurons, Int J Bifur Chaos, 4, 1189-1198 (2008) · Zbl 1147.34334 [56] Wang, Q. Y.; Duan, Z. S.; Perc, M.; Chen, G. R., Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability, Europhys Lett, 83, 50008 (2008) [57] Shi, X.; Lu, Q. S., Burst synchronization of electrically and chemically coupled map-based neurons, Physica A, 388, 12, 2410-2419 (2009) [58] Ho, M. C.; Hung, Y. C.; Chou, C. H., Phase and anti-phase synchronization of two chaotic systems by using active control, Phys Lett A, 296, 1, 43-48 (2002) · Zbl 1098.37529 [59] Liu, J. B.; Ye, C. F.; Zhang, S. J.; Song, W. T., Anti-phase synchronization in coupled map lattices, Phys Lett A, 274, 1-2, 27-29 (2000) · Zbl 1050.37518 [60] El-Dessoky, M. M., Anti-synchronization of four scroll attractor with fully unknown parameters, Nonlinear Anal B, 11, 2, 778-783 (2010) · Zbl 1181.37040 [61] Al-sawalha, M. M.; Noorani, M. S.M.; Al-dlalah, M. M., Adaptive anti-synchronization of chaotic systems with fully unknown parameters, Comput Math Appl, 59, 10, 3234-3244 (2010) · Zbl 1198.34086 [62] Shi, X. R.; Wang, Z. L., Adaptive added-order anti-synchronization of chaotic systems with fully unknown parameters, Appl Math Comput, 215, 5, 1711-1717 (2009) · Zbl 1179.65158 [63] Al-Sawalha, M. M.; Noorani, M. S.M., Anti-synchronization of two hyperchaotic systems via nonlinear control, Commun Nonlinear Sci Numer Simul, 14, 8, 3402-3411 (2009) · Zbl 1221.37210 [64] Al-Sawalha, M. M.; Noorani, M. S.M., Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters, Commun Nonlinear Sci Numer Simul, 15, 4, 1036-1047 (2010) · Zbl 1221.93123 [65] Zhang, Q.; Lü, J. H.; Chen, S. H., Coexistence of anti-phase and complete synchronization in the generalized Lorenz system, Commun Nonlinear Sci Numer Simul, 15, 10, 3067-3072 (2010) · Zbl 1222.93126 [66] Qin, W. X.; Chen, G. R., Coupling schemes for cluster synchronization in coupled Josephson equations, Physica D, 197, 3-4, 375-391 (2004) · Zbl 1066.34046 [67] Asheghan, M. M.; Beheshti, M. T.H.; Tavazoei, M. S., Robust synchronization of perturbed Chen’s fractional-order chaotic systems, Commun Nonlinear Sci Numer Simul, 16, 2, 1044-1051 (2011) · Zbl 1221.34007 [68] Xiao, Y. Z.; Xu, W.; Tang, S. F.; Li, X. C., Adaptive complete synchronization of the noise-perturbed two bi-directionally coupled chaotic systems with time-delay and unknown parametric mismatch, Appl Math Comput, 213, 2, 538-547 (2009) · Zbl 1165.93321 [69] Al-sawalha, M. M.; Noorani, M. S.M., Adaptive reduced-order anti-synchronization of chaotic systems with fully unknown parameters, Commun Nonlinear Sci Numer Simul, 15, 10, 3022-3034 (2010) · Zbl 1222.34059 [70] Salarieh, H.; Alasty, A., Adaptive chaos synchronization in Chua’s systems with noisy parameters, Math Comput Simul, 79, 3, 233-241 (2008) · Zbl 1166.34029 [71] Krese, B.; Perc, M.; Govekar, E., The dynamics of laser droplet generation, Chaos, 20, 013129 (2010) [72] Pikovsky, A. S.; Rosemblum, M.; Kurths, J., Synchronization: a universal concept in nonlinear sciences (2001), Cambridge University Press: Cambridge University Press Cambridge, UK This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.