×

The effects of variable viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet. (English) Zbl 1222.76014

Summary: The effects of variable viscosity and thermal conductivity on the flow and heat transfer in a laminar liquid film on a horizontal shrinking/stretching sheet are analyzed. The similarity transformation reduces the time independent boundary layer equations for momentum and thermal energy into a set of coupled ordinary differential equations. The resulting five-parameter problem is solved by the homotopy perturbation method. The results are presented graphically to interpret various physical parameters appearing in the problem.

MSC:

76A20 Thin fluid films
65L99 Numerical methods for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Crane, L.J., Flow past a stretching plate, Z. angew. math. phys., 21, 645-647, (1970)
[2] Andersson, H.I.; Aarseth, J.B.; Dandapat, B.S., Heat transfer in a liquid film on an unsteady stretching surface, Int. J. heat mass transfer, 43, 69-74, (2000) · Zbl 1042.76507
[3] Wang, C.; Pop, I., Analysis of the flow of a power-law fluid film on an unsteady stretching surface by means of homotopy analysis method, J. non-Newton. fluid mech., 138, 161-172, (2006) · Zbl 1195.76132
[4] Liu, I.C.; Anderson, H.I., Heat transfer in a liquid film on an unsteady stretching sheet, Int. J. therm. sci., 47, 766-772, (2008)
[5] Mahmood, M.; Asghar, S.; Hossain, A.M., Squeezed flow and heat transfer over a porous surface for viscous fluid, J. heat mass transfer, 44, 165-173, (2007)
[6] Wang, C., Analytic solutions for a liquid film on an unsteady stretching surface, Heat mass transfer, 42, 759-766, (2006)
[7] Dandapat, B.S.; Santra, B.; Vajravelu, K., The effects of variable fluid properties and thermocapillarity on the flow of a thin film on an unsteady stretching sheet, Int. J. heat mass transfer, 50, 991-996, (2007) · Zbl 1124.80317
[8] Anderson, H.I.; Aarseth, J.B.; Dandapat, B.S., Heat transfer in a liquid film on an unsteady stretching surface, Int. J. heat mass transfer, 43, 69-74, (2000) · Zbl 1042.76507
[9] Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K, Thin film of a third grade fluid on a moving belt by he’s homotopy perturbation method, Int. J. nonlinear sci. numer. simul., 7, 1, 7-14, (2006) · Zbl 1187.76622
[10] Xu, L., He’s homotopy perturbation method for a boundary layer equation in unbounded domain, Comput. math. appl., 54, 1067-1070, (2007) · Zbl 1267.76089
[11] Raftari, B.; Yıldırım, A., The application of homotopy perturbation method for MHD flows of UCM fluids above porous stretching sheets, Comput. math. appl., 59, 3328-3337, (2010) · Zbl 1198.65148
[12] Raftari, B.; Mohyud-Din, S.T.; Yıldırım, A., Solution to the MHD flow over a non-linear stretching sheet by homotopy perturbation method, Sci. China phys. mech. astron., (2010)
[13] Ariel, P.D., The three-dimensional flow past a stretching sheet and the homotopy perturbation method, Comput. math. appl., 54, 920-925, (2007) · Zbl 1138.76029
[14] Ariel, P.D., Extended homotopy perturbation method and computation of flow past a stretching sheet, Comput. math. appl., 58, 2402-2409, (2009) · Zbl 1189.65156
[15] He, J.H., Homotopy perturbation technique, Comput. math. appl. mech. eng., 178, 257-292, (1999) · Zbl 0956.70017
[16] He, J.H., Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. nonlinear sci. numer. simul., 6, 207-208, (2005) · Zbl 1401.65085
[17] He, J.H., Homotopy perturbation method for solving boundary value problems, Phys. lett. A, 350, 87-88, (2006) · Zbl 1195.65207
[18] He, J.H., Recent developments of the homotopy perturbation method, Topol. methods nonlinear anal., 31, 205-209, (2008) · Zbl 1159.34333
[19] Siddiqui, A.M.; Rana, M.A.; Irum, S., Application of homotopy perturbation and numerical methods to the unsteady squeezing MHD flow of a second grade fluid between circular plates, Int. J. nonlinear sci. numer. simul., 10, 6, 699-709, (2009)
[20] Hesameddini, E.; Latifizadeh, H., An optimal choice of initial solutions in the homotopy perturbation method, Int. J. nonlinear sci. numer. simul., 10, 1389-1398, (2009)
[21] Shadloo, M.S.; Kimiaeifar, A., Application of HPM to find analytical solution for MHD flows of viscoelastic fluids in converging/diverging channels, J. mech. eng. sci., 225, 2, 347-353, (2011)
[22] Ariel, P.D., Homotopy perturbation method and the natural convection flow of a third grade fluid through a circular tube, Nonlinear sci. lett. A, 1, 2, 43-52, (2010)
[23] Gupta, Praveen Kumar; Singh, Mithilesh, Homotopy perturbation method for fractional fornberg – whitham equation, Comput. math. appl., 61, 2, 250-254, (2011) · Zbl 1211.65138
[24] Chun, Changbum; Sakthivel, Rathinasamy, Homotopy perturbation technique for solving two-point boundary value problems-comparison with other methods, Comput. phys. commun., 181, 1021-1024, (2010) · Zbl 1216.65094
[25] Khan, Y.; Faraz, N.; Yıldırım, A.; Wu, Q., A series solution of the long porous slider, Tribol. trans., 54, 187-191, (2011)
[26] Jalaal, M.; Nejad, M.G.; Jalili, P.; Esmaeilpour, M.; Bararnia, H.; Ghasemi, E.; Soleimani, Soheil; Ganji, D.D.; Moghimi, S.M., Homotopy perturbation method for motion of a spherical solid particle in plane Couette fluid flow, Comput. math. appl., 61, 2267-2270, (2011) · Zbl 1219.76036
[27] Moghimi, S.M.; Ganji, D.D.; Bararnia, H.; Hosseini, M.; Jalaal, M., Homotopy perturbation method for nonlinear MHD jeffery – hamel problem, Comput. math. appl., 61, 2213-2216, (2011) · Zbl 1219.76038
[28] Khan, Najeeb Alam; Khan, Nasir-Uddin; Ayaz, Muhammad; Mahmood, Amir, Analytical methods for solving the time-fractional swift – hohenberg (S-H) equation, Comput. math. appl., 61, 2182-2185, (2011) · Zbl 1219.65144
[29] Khan, Y., An effective modification of the Laplace decomposition method for nonlinear equations, Int. J. nonlinear sci. numer. simul., 10, 11-12, 1373-1376, (2009)
[30] Khan, Y.; Faraz, N., Application of modified Laplace decomposition method for solving boundary layer equation, J. King saud univ. sci., 23, 115-119, (2011)
[31] Khan, Y.; Faraz, N., A new approach to differential difference equations, J. adv. res. differ. equ., 2, 2, 1-12, (2010)
[32] Khan, Y.; Austin, F., Application of the Laplace decomposition method to nonlinear homogeneous and non-homogenous advection equations, Z. naturforsch., 65a, 849-853, (2010)
[33] Khan, Y.; Wu, Q., Homotopy perturbation transform method for nonlinear equations using he’s polynomials, Comput. math. appl., 61, 1963-1967, (2011) · Zbl 1219.65119
[34] Faraz, N.; Khan, Y.; Yildirim, A., Analytical approach to two-dimensional viscous flow with a shrinking sheet via variational iteration algorithm-II, J. King saud univ. sci., 23, 1, 77-81, (2011)
[35] He, J.H.; Wu, G.C.; Austin, F., The variational iteration method which should be followed, Nonlinear sci. lett. A, 1, 1, 1-30, (2010)
[36] Faraz, N., Study of the effects of the Reynolds number on circular porous slider via variational iteration algorithm-II, Comput. math. appl., 61, 1991-1994, (2011)
[37] Ma, W.X.; Fuchssteiner, B., Explicit and exact solutions to a kolmogorov – petrovskii – piskunov equation, Int. J. nonlinear mech., 31, 329-338, (1996) · Zbl 0863.35106
[38] Ma, W.X.; Lee, J.H., A transformed rational function method and exact solutions to the 3+1 dimensional jimbo – miwa equation, Chaos solitons fractals, 42, 1356-1363, (2009) · Zbl 1198.35231
[39] Ma, W.X.; Fan, E., Linear superposition principle applying to Hirota bilinear equations, Comput. math. appl., 61, 950-959, (2011) · Zbl 1217.35164
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.