zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The inverse electromagnetic scattering problem for a partially coated dielectric. (English) Zbl 1222.78024
Summary: We use the linear sampling method to determine the shape and surface conductivity of a partially coated dielectric infinite cylinder from knowledge of the far field pattern of the scattered TM polarized electromagnetic wave at fixed frequency. A mathematical justification for the method is provided based on the use of a complete family of solutions. Numerical examples are given showing the efficiency of our method.

78A46Inverse scattering problems
35R30Inverse problems for PDE
Full Text: DOI
[1] Cakoni, F.; Colton, D.: A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media. Proc. Edinburgh math. Soc. 46, 293-314 (2003) · Zbl 1051.78013
[2] Cakoni, F.; Colton, D.: The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J. Appl. math. 64, 709-723 (2004) · Zbl 1059.35163
[3] Cakoni, F.; Colton, D.; Monk, P.: The electromagnetic inverse scattering problem for partially coated Lipschitz domains. Proc. roy soc. Edinburgh 134A, 661-682 (2004) · Zbl 1071.78021
[4] Cakoni, F.; Colton, D.; Monk, P.: The determination of the surface conductivity of a partially coated dielectric. SIAM J. Appl. math. 65, 767-789 (2005) · Zbl 1083.78007
[5] Colton, D.; Haddar, H.; Piana, M.: The linear sampling method in inverse electromagnetic scattering theory. Inverse problems 19, S105-S137 (2003) · Zbl 1049.78010
[6] Colton, D.; Kress, R.: Inverse acoustic and electromagnetic scattering theory. (1998) · Zbl 0893.35138
[7] Colton, D.; Sleeman, B. D.: An approximation property of importance in inverse scattering theory. Proc. Edinburgh math. Soc. 44, 449-454 (2001) · Zbl 0992.35115
[8] Hähner, P.: On the uniqueness of the shape of a penetrable, anisotropic obstacle. J. comput. Appl. math. 116, 167-180 (2000) · Zbl 0978.35098
[9] Hoppe, D. J.; Rahmat-Samii, Y.: Impedance boundary conditions in electromagnetics. (1995)
[10] Mclean, W.: Strongly elliptic systems and boundary integral equations. (2000) · Zbl 0948.35001