zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A probability maximization model based on rough approximation and its application to the inventory problem. (English) Zbl 1222.90056
Summary: We concentrate on dealing with a class of multi-objective programming problems with random coefficients and present its application to the multi-item inventory problem. The P-model is proposed to obtain the maximum probability of the objective functions and rough approximation is applied to deal with the feasible set with random parameters. The fuzzy programming technique and genetic algorithm are then applied to solve the crisp programming problem. Finally, the application to Auchan’s inventory system is given in order to show the efficiency of the proposed models and algorithms.

90C29Multi-objective programming; goal programming
90C15Stochastic programming
90B05Inventory, storage, reservoirs
Full Text: DOI
[1] Baker, R. C.; Urban, T. L.: A deterministic inventory system with an inventory-level-dependent demand rate, Journal of the operational research society 39, No. 9, 823-831 (1988) · Zbl 0659.90040
[2] Baker, R. C.; Urban, T. L.: Deterministic fixed order-level inventory models: an application for replenishment of radioactive source material for irradiation sterilizers, European journal of operational research 50, No. 3, 249-256 (1991)
[3] Rezaei, J.; Davoodi, M.: A deterministic, multi-item inventory model with supplier selection and imperfect quality, Applied mathematical modelling 32, 2106-2116 (2008) · Zbl 1145.90313 · doi:10.1016/j.apm.2007.07.009
[4] Naddor, E.: Inventory systems, (1966) · Zbl 0315.90019
[5] Silver, E. A.; Peterson, R.: Decision systems for inventory management and production planning, (1985)
[6] Lewis, C. D.: Scientific inventory control, (1970)
[7] Hadley, G.; Whitin, J. M.: Analysis of inventory systems, (1963) · Zbl 0133.42901
[8] Maiti, A. K.; Maiti, M. K.; Matiti, M.: Two storage inventory model with random planning horizon, Applied mathematics and computation 183, 1084-1097 (2006) · Zbl 1275.90005
[9] Kao, C.; Hsu, W. K.: A single-period inventory model with fuzzy demand, Computers and mathematics with applications 43, 841-848 (2002) · Zbl 0994.90002 · doi:10.1016/S0898-1221(01)00325-X
[10] Ishii, H.; Konno, T.: A stochastic inventory problem with fuzzy shortage cost, European journal of operational research 106, 90-94 (1998)
[11] Shao, Z.; Ji, X.: Fuzzy multi-product constraint newsboy problem, Applied mathematics and computation 180, 7-15 (2006) · Zbl 1139.90436 · doi:10.1016/j.amc.2005.11.123
[12] Dutta, A. P.; Chakraborty, D.; Roy, A. R.: A sing-period inventory model with fuzzy random variable demand, Mathematical and computer modelling 41, 915-922 (2005) · Zbl 1121.90302 · doi:10.1016/j.mcm.2004.08.007
[13] Charnes, A.; Cooper, W. W.: Deterministic equivalents for optimizing and satisficing under chance constraints, Operations research 11, 18-39 (1963) · Zbl 0117.15403 · doi:10.1287/opre.11.1.18
[14] Dantzig, G. B.: Linear programming under uncertainty, Management science 1, 197-206 (1995) · Zbl 0995.90589 · doi:10.1287/mnsc.1.3-4.197
[15] Carla, H.; Paulo, O. E.: Large deviations for the empirical mean of associated random variables, Statistics & probability letters 78, 594-598 (2008) · Zbl 1151.60013 · doi:10.1016/j.spl.2007.09.020
[16] Greco, S.: Rough sets methodology for sorting problems in presence of multiple attributes and criteria, European journal of operational research 138, 247-259 (2002) · Zbl 1008.90509
[17] Friz, P.; Victoir, N.: Euler estimates for rough differential equations, Journal of differential equations 244, 388-412 (2008) · Zbl 1140.60037 · doi:10.1016/j.jde.2007.10.008
[18] Runarsson, T. P.: A new proposal for multiobjective optimization using particle swarm optimization and rough sets theory, Ppsn ix, lncs 4193, 483-492 (2006)
[19] Yao, Y.: Probabilistic rough set approximations, International journal of approximation reasoning 49, 255-271 (2008) · Zbl 1191.68702
[20] Ziarko, W.: Probabilistic approach to rough sets, International journal of approximation reasoning 49, 272-281 (2008) · Zbl 1191.68705 · doi:10.1016/j.ijar.2007.06.014
[21] Pawlak, Z.: Rough sets, decision algorithms and Bayes theorem, European journal of operational research 136, 181-189 (2002) · Zbl 1089.68127
[22] Pawlak, Z.: Rough sets, International journal of computer and information sciences 11, 341-356 (1982) · Zbl 0501.68053
[23] Pawlak, Z.; Wong, S. K. M.; Ziarko, W.: Rough sets: probabilistic versus deterministic approach, International journal of man -- machnie studies 29, 81-95 (1988) · Zbl 0663.68094
[24] Slezak, D.; Ziarko, W.: The investigation of the Bayesian rough set model, International journal of approximate reasoning 40, No. 1 -- 2, 81-91 (2005) · Zbl 1099.68089
[25] Wong, S. K. M.; Ziarko, W.: Comparison of the probabilistic approximate classification and the fuzzy set model, Fuzzy sets and systems 21, 793-809 (1986)
[26] Greco, S.; Matarazzo, B.; Slowin&grave, R.; Ski: Parameterized rough set model using rough membership and Bayesian confirmation measures, International journal of approximate reasoning 48, 285-300 (2008) · Zbl 1191.68678
[27] Xu, J.; Yao, L.: A class of multiobjective linear programming models with random rough coefficients, Mathematical and computer modelling 49, 189-206 (2009) · Zbl 1165.90614 · doi:10.1016/j.mcm.2008.01.003
[28] Youness, E. A.: Characterizing solutions of rough programming problems, European journal of operational research 168, 1019-1029 (2006) · Zbl 1077.90085 · doi:10.1016/j.ejor.2004.05.019
[29] Mandal, N. K.; Roy, T. K.; Maiti, M.: Multi-objective fuzzy inventory model with three constraints: a geometric programming approach, Fuzzy sets and systems 150, 87-106 (2005) · Zbl 1075.90005 · doi:10.1016/j.fss.2004.07.020
[30] Das, K.; Roy, T. K.; Maiti, M.: Multi-item stochastic and fuzzy-stochastic inventory models under two restrictions, Computers & operations research 31, 1793-1806 (2004) · Zbl 1073.90006 · doi:10.1016/S0305-0548(03)00120-5
[31] Charnes, A.; Cooper, W. W.: Deterministic equivalents for optimizing and satisficing under chance constraints, Operations research 11, 18-39 (1955) · Zbl 0117.15403 · doi:10.1287/opre.11.1.18
[32] Slowin&grave, R.; Ski; Vanderpooten, D.: A generalized definition of rough approximations based on similarity, IEEE transactions on knowledge and data engineering 12, No. 2, 331-336 (2000)
[33] Zimmermann, H. J.: Fuzzy programming and linear programming with several objective functions, Fuzzy sets and systems 1, No. 1, 45-55 (1978) · Zbl 0364.90065 · doi:10.1016/0165-0114(78)90031-3
[34] Sakawa, M.: Interactive fuzzy goal programming for nonlinear programming problems and its applications to water quality management, Control and cybernetics 13, 217-228 (1984) · Zbl 0551.90089
[35] Holland, H.: Adaption in natural and artifical systems, (1975) · Zbl 0317.68006
[36] Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, (1994) · Zbl 0818.68017
[37] Fogel, D. B.: Evolution computation: toward a new philosophy of machine intelligence, (1995)
[38] Koza, J. R.: Genetic programming, (1992) · Zbl 0850.68161
[39] Goldberg, D. E.: Genetic algorithms in search, optimization and machine learning, (1989) · Zbl 0721.68056
[40] Gen, M.; Cheng, R.: Genetic algorithms and engineering design, (1997)
[41] Fonseca, C.; Fleming, P.: An overview of evolutionary algorithms in multiobjective optimization, Evolutionary computation 3, 1-16 (1995)