zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Consensus of linear multi-agent systems with reduced-order observer-based protocols. (English) Zbl 1222.93013
Summary: This paper considers the consensus problems for both continuous- and discrete-time linear multi-agent systems with directed communication topologies. Distributed reduced-order observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct a reduced-order protocol, under which a continuous-time multi-agent system whose communication topology contains a directed spanning tree can reach consensus. This algorithm is further modified to achieve consensus with a prescribed convergence rate. These two algorithms have a favorable decoupling property. In light of the modified algebraic Riccati equation, an algorithm is then given to construct a reduced-order protocol for the discrete-time case.

93A14Decentralized systems
93C05Linear control systems
93C55Discrete-time control systems
Full Text: DOI
[1] Olfati-Saber, R.; Fax, J.; Murray, R.: Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE 95, No. 1, 215-233 (2007)
[2] Ren, W.; Beard, R.; Atkins, E.: Information consensus in multivehicle cooperative control, IEEE control systems magazine 27, No. 2, 71-82 (2007)
[3] Fax, J.; Murray, R.: Information flow and cooperative control of vehicle formations, IEEE transactions on automatic control 49, No. 9, 1465-1476 (2004)
[4] Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory, IEEE transactions on automatic control 51, No. 3, 401-420 (2006)
[5] Su, H.; Wang, X.; Lin, Z.: Flocking of multi-agents with a virtual leader, IEEE transactions on automatic control 54, No. 2, 293-307 (2009)
[6] Jadbabaie, A.; Lin, J.; Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE transactions on automatic control 48, No. 6, 988-1001 (2003)
[7] Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O.: Novel type of phase transition in a system of self-driven particles, Physical review letters 75, No. 6, 1226-1229 (1995)
[8] Olfati-Saber, R.; Murray, R.: Consensus problems in networks of agents with switching topology and time-delays, IEEE transactions on automatic control 49, No. 9, 1520-1533 (2004)
[9] Ren, W.; Beard, R.: Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE transactions on automatic control 50, No. 5, 655-661 (2005)
[10] Rahmani, A.; Ji, M.; Mesbahi, M.; Egerstedt, M.: Controllability of multi-agent systems from a graph-theoretic perspective, SIAM journal on control and optimization 48, No. 1, 162-186 (2009) · Zbl 1182.93025 · doi:10.1137/060674909
[11] Hong, Y.; Chen, G.; Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks, Automatica 44, No. 3, 846-850 (2008) · Zbl 1283.93019
[12] Cortés, J.: Distributed algorithms for reaching consensus on general functions, Automatica 44, No. 3, 726-737 (2008) · Zbl 1283.93016
[13] Lin, P.; Jia, Y.: Distributed robust H$\infty $ consensus control in directed networks of agents with time-delay, Systems and control letters 57, No. 8, 643-653 (2008) · Zbl 1140.93355 · doi:10.1016/j.sysconle.2008.01.002
[14] Li, Z.; Duan, Z.; Huang, L.: H$\infty $ control of networked multi-agent systems, Journal of systems science and complexity 22, No. 1, 35-48 (2009) · Zbl 1178.93045 · doi:10.1007/s11424-009-9145-y
[15] Ren, W.: On consensus algorithms for double-integrator dynamics, IEEE transactions on automatic control 53, No. 6, 1503-1509 (2008)
[16] Lin, P.; Jia, Y.: Further results on decentralised coordination in networks of agents with second-order dynamics, IET control theory and applications 3, No. 7, 957-970 (2009)
[17] Ren, W.; Moore, K.; Chen, Y.: High-order and model reference consensus algorithms in cooperative control of multivehicle systems, ASME journal of dynamic systems, measurement, and control 129, No. 5, 678-688 (2007)
[18] Jiang, F.; Wang, L.: Consensus seeking of high-order dynamic multi-agent systems with fixed and switching topologies, International journal of control 85, No. 2, 404-420 (2010) · Zbl 1184.93008 · doi:10.1080/00207170903177774
[19] Cao, Y.; Ren, W.: Sampled-data discrete-time coordination algorithms for double-integrator dynamics under dynamic directed interaction, International journal of control 83, No. 3, 506-515 (2010) · Zbl 1222.93146 · doi:10.1080/00207170903214338
[20] Gao, Y.; Wang, L.; Xie, G.; Wu, B.: Consensus of multi-agent systems based on sampled-data control, International journal of control 82, No. 12, 2193-2205 (2009) · Zbl 1178.93091 · doi:10.1080/00207170902948035
[21] Z. Li, X. Liu, P. Lin, W. Ren, Consensus of multi-Agent systems with general linear dynamics and reduced-order protocols, in: Proceedings of the Chinese Control Conference, Yantai, China, 2011. · Zbl 1222.93013
[22] Tuna, S.: Conditions for synchronizability in arrays of coupled linear systems, IEEE transactions on automatic control 54, No. 10, 2416-2420 (2009)
[23] Scardovi, L.; Sepulchre, R.: Synchronization in networks of identical linear systems, Automatica 45, No. 11, 2557-2562 (2009) · Zbl 1183.93054 · doi:10.1016/j.automatica.2009.07.006
[24] Seo, J.; Shim, H.; Back, J.: Consensus of high-order linear systems using dynamic output feedback compensator: low gain approach, Automatica 45, No. 11, 2659-2664 (2009) · Zbl 1180.93005 · doi:10.1016/j.automatica.2009.07.022
[25] Li, Z.; Duan, Z.; Chen, G.; Huang, L.: Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE transactions on circuits and systems I: Regular papers 57, No. 1, 213-224 (2010)
[26] Li, Z.; Duan, Z.; Chen, G.: On dynamic consensus of linear multi-agent systems, IET control theory and applications 5, No. 1, 19-28 (2011)
[27] Agaev, R.; Chebotarev, P.: On the spectra of nonsymmetric Laplacian matrices, Linear algebra and its applications 399, No. 1, 157-178 (2005) · Zbl 1076.15012 · doi:10.1016/j.laa.2004.09.003
[28] Chen, C.: Linear system theory and design, (1999)
[29] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, (1994) · Zbl 0816.93004
[30] Sturm, J.: Using sedumi 1.02, a Matlab toolbox for optimization over symmetric cones, Optimization methods and software 11, No. 1, 625-653 (1999) · Zbl 0973.90526 · doi:10.1080/10556789908805766
[31] Sinopoli, B.; Schenato, L.; Franceschetti, M.; Poolla, K.; Jordan, M.; Sastry, S.: Kalman filtering with intermittent observations, IEEE transactions on automatic control 49, No. 9, 1453-1464 (2004)
[32] Schenato, L.; Sinopoli, B.; Franceschetti, M.; Poolla, K.; Sastry, S.: Foundations of control and estimation over lossy networks, Proceedings of the IEEE 95, No. 1, 163-187 (2007)
[33] Zhou, K.; Doyle, J.: Essentials of robust control, (1998) · Zbl 0890.93003