Xiang, Wei; Huangpu, Yugao Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties. (English) Zbl 1222.93045 Commun. Nonlinear Sci. Numer. Simul. 15, No. 11, 3241-3247 (2010). Summary: We are concerned with the stabilization problem for a class of nonlinear systems. Using second-order sliding mode control approach, a robust control scheme is established to make the states of system to zero or into predictable bounds for matched and unmatched uncertainties, respectively. Meanwhile, the chattering phenomenon is eliminated. A comparative example is given to emphasize the effectiveness and robustness of the proposed method. Cited in 1 ReviewCited in 15 Documents MSC: 93B12 Variable structure systems 34H10 Chaos control for problems involving ordinary differential equations 34C28 Complex behavior and chaotic systems of ordinary differential equations 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 37N35 Dynamical systems in control Keywords:chaotic system; chattering phenomenon; robustness; sliding mode control; uncertainty PDF BibTeX XML Cite \textit{W. Xiang} and \textit{Y. Huangpu}, Commun. Nonlinear Sci. Numer. Simul. 15, No. 11, 3241--3247 (2010; Zbl 1222.93045) Full Text: DOI References: [1] Lin, J. S.; Yan, J. J., Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller, Nonlinear Anal: Real World Appl, 10, 1151-1159 (2009) · Zbl 1167.37329 [2] Chen, M.; Zhou, D.; Shang, Y., A new observer-based synchronization scheme for private communication, Chaos Soliton Fract, 24, 1025-1030 (2005) · Zbl 1069.94508 [3] Yana, J. J.; Huanga, C. F.; Lin, J. S., Robust synchronization of chaotic behavior in unidirectional coupled RCLSJ models subject to uncertainties, Nonlinear Anal: Real World Appl, 10, 3091-3097 (2009) · Zbl 1171.37019 [5] Wang, H.; Han, Z. Z.; Xie, Q. Y., Finite-time chaos control via nonsingular terminal sliding mode control, Commun Nonlinear Sci Numer Simulat, 14, 2728-2733 (2009) · Zbl 1221.37225 [6] Jang, M. J.; Chen, C. C.; Chen, C. O., Sliding mode control of chaos in the cubic Chua’s circuit system, Int J Bifurcat Chaos, 12, 1437-1449 (2002) [7] Bartolini, G.; Ferrara, A.; Usani, E., Chattering avoidance by second-order sliding mode control, IEEE Trans Automat Contr, 43, 241-246 (1998) · Zbl 0904.93003 [8] Feng, Y.; Han, X.; Wang, Y., Second-order terminal sliding mode control of uncertain multivariable systems, Int J Control, 80, 856-862 (2007) · Zbl 1124.93032 [9] Liu, L. P.; Han, Z. Z.; Li, W. L., Global sliding mode control and application in chaotic systems, Nonlinear Dyn, 56, 193-198 (2009) · Zbl 1170.93320 [10] Bartolini, G.; Pydynowski, P., An improved chattering free VSC scheme for uncertain dynamical systems, IEEE Trans Automat Contr, 41, 1220-1226 (1996) · Zbl 0858.93021 [11] Nijmeijer, H.; Mareels, L. M., An observer looks at synchronization, IEEE Trans Circult Syst, 44, 882-890 (1997) [12] Zhang, J.; Li, C.; Zhang, H., Chaos synchronization using single variable feedback based on backstepping method, Chaos Soliton Fract, 21, 1183-1193 (2004) · Zbl 1129.93518 [13] Njah, A. N.; Vincent, U. E., Chaos synchronization between single and double wells Duffing-Van der Pol oscillators using active control, Chaos Soliton Fract, 37, 1356-1361 (2008) · Zbl 1142.93350 [14] Tong, S. C.; Li, C. Y.; Li, Y. M., Fuzzy adaptive observer backstepping control for MIMO nonlinear systems, Fuzzy Set Syst, 160, 2755-2775 (2009) · Zbl 1176.93049 [15] Wang, B.; Wen, G. J., On the synchronization of uncertain master-slave chaotic systems with disturbance, Chaos Soliton Fract, 41, 145-151 (2009) · Zbl 1198.34123 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.