×

zbMATH — the first resource for mathematics

Projective synchronization of chaotic fractional-order energy resources demand-supply systems via linear control. (English) Zbl 1222.93108
Summary: A fractional-order energy resources demand-supply system is proposed. A projective synchronization scheme is proposed as an extension on the synchronization scheme of Z. M. Odibat, N. Corson, M. A. Aziz-Alaoui and C. Bertelle [Int. J. Bifurcation Chaos Appl. Sci. Eng. 20, No. 1, 81–97 (2010; Zbl 1183.34095)]. The scheme is applied to achieve projective synchronization of the chaotic fractional-order energy resource demand-supply systems. Numerical simulations are performed to verify the effectiveness of the proposed synchronization scheme.

MSC:
93C15 Control/observation systems governed by ordinary differential equations
34A08 Fractional ordinary differential equations and fractional differential inclusions
93B52 Feedback control
93B05 Controllability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Odibat, Z.; Corson, N.; Aziz-Alaoui, M.; Bertelle, C., Synchronization of chaotic fractional-order systems via linear control, Int J bifurcation chaos, 20, 81-97, (2010) · Zbl 1183.34095
[2] Oldham, K.; Spanier, J., The fractional calculus, (1974), Academic press New York · Zbl 0428.26004
[3] Samko, S.; Kilbas, A.; Marichev, O., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach New York · Zbl 0818.26003
[4] Wang, S.; Xu, M., Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus, Nonlinear anal-real, 10, 1087-1096, (2009) · Zbl 1167.76311
[5] Jiang, X.; Xu, M.; Qi, H., The fractional diffusion model with an absorption term and modified fick’s law for non-local transport processes, Nonlinear anal-real, 10, 262-269, (2009) · Zbl 1196.37120
[6] Liu, Y.; Ma, J., Exact solutions of a generalized multi-fractional nonlinear diffusion equation in radical symmetry, Commun theor phys, 52, 857-861, (2009) · Zbl 1182.35067
[7] Asheghan, M.; Beheshti, M.; Tavazoei, M., Robust synchronization of perturbed chen’s fractional-order chaotic systems, Commun nonlinear sci numer simul, 16, 1044-1051, (2011) · Zbl 1221.34007
[8] Shahiri, M.; Ghaderi, R.; Ranjbar, N.; Hosseinnia, S.; Momani, S., Chaotic fractional-order coullet system: synchronization and control approach, Commun nonlinear sci numer simul, 15, 665-674, (2010) · Zbl 1221.37222
[9] Meral, F.; Royston, T.; Magin, R., Fractional calculus in viscoelasticity: an experimental study, Commun nonlinear sci numer simul, 15, 939-945, (2010) · Zbl 1221.74012
[10] Sabatier, J.; Cugnet, M.; Laruelle, S.; Grugeon, S.; Sahut, B.; Oustaloup, A., A fractional order model for lead-acid battery crankability estimation, Commun nonlinear sci numer simul, 15, 1308-1317, (2010)
[11] Hamamci, S.; Koksal, M., Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems, Comput math appl, 59, 1621-1629, (2010) · Zbl 1189.93125
[12] Bouafoura, M.; Braiek, N., PIλDμ controller design for integer and fractional plants using piecewise orthogonal functions, Commun nonlinear sci numer simul, 15, 1267-1278, (2010) · Zbl 1221.93073
[13] Ahmed, E.; Elgazzar, A.S., On fractional order differential equations model for nonlocal epidemics, Physica A, 379, 607-614, (2007)
[14] Ahmed, E.; El-Sayed, A.M.A.; El-Saka, H.A.A., Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J math anal appl, 325, 542-553, (2007) · Zbl 1105.65122
[15] Matouk, A., Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der pol – duffing circuit, Commun nonlinear sci numer simul, 16, 975-986, (2011) · Zbl 1221.93227
[16] Ahmad, W.; El-Khazali, R., Fractional-order dynamical models of love, Chaos soliton fract, 33, 1367-1375, (2007) · Zbl 1133.91539
[17] Song, L.; Xu, S.; Yang, J., Dynamical models of happiness with fractional order, Commun nonlinear sci numer simul, 15, 616-628, (2010) · Zbl 1221.93234
[18] Chen, W., Nonlinear dynamics and chaos in a fractional-order financial system, Chaos soliton fract, 36, 1305-1314, (2008)
[19] Deng, W.; Li, C., Chaos synchronization of the fractional Lü system, Physica A, 353, 61-72, (2005)
[20] Wang, X.; Song, J., Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun nonlinear sci numer simul, 14, 3351-3357, (2009) · Zbl 1221.93091
[21] Wang, X.; He, Y., Projective synchronization of fractional order chaotic system based on linear separation, Phys lett A, 372, 435-441, (2008) · Zbl 1217.37035
[22] Wang, X.; Wang, M., Dynamic analysis of the fractional-order Liu system and its synchronization, Chaos, 17, 033106, (2007) · Zbl 1163.37382
[23] Bhalekar, S.; Daftardar-Gejji, V., Synchronization of different fractional order chaotic systems using active control, Commun nonlinear sci numer simul, 15, 3536-3546, (2010) · Zbl 1222.94031
[24] Wu, X.; Lu, H.; Shen, S., Synchronization of a new fractional-order hyperchaotic system, Phys lett A, 373, 2329-2337, (2009) · Zbl 1231.34091
[25] Wu, X.; Chen, G.; Cai, J., Chaos synchronization of the master – slave generalized Lorenz systems via linear state error feedback control, Physica D, 229, 52-80, (2007) · Zbl 1131.34040
[26] Sun, M.; Tian, L.; Fu, Y., An energy resources demand – supply system and its dynamical analysis, Chaos soliton fract, 32, 1, 168-180, (2007) · Zbl 1133.91524
[27] Sun, M.; Tian, L.; Fu, Y.; Qian, W., Dynamics and adaptive synchronization of the energy resource system, Chaos soliton fract, 31, 879-888, (2007) · Zbl 1149.34032
[28] Sun, M.; Tian, L.; Jia, Q., Adaptive control and synchronization of a four-dimensional energy resources system with unknown parameters, Chaos soliton fract, 39, 1943-1949, (2009) · Zbl 1197.93100
[29] Li, X.; Xu, W.; Li, R., Chaos synchronization of the energy resource system, Chaos soliton fract, 40, 642-652, (2009) · Zbl 1197.93127
[30] Huang, C.; Cheng, K.; Yan, J., Robust chaos synchronization of four-dimensional energy resource systems subject to unmatched uncertainties, Commun nonlinear sci numer simul, 14, 2784-2792, (2009)
[31] Wang, Z., Chaos synchronization of an energy resource system based on linear control, Nonlinear anal-real, 11, 3336-3343, (2010) · Zbl 1216.34061
[32] Wang, Z.; Shi, X., Synchronization of a four-dimensional energy resource system via linear control, Commun nonlinear sci numer simul, 16, 463-474, (2011) · Zbl 1221.93238
[33] Deng, W., Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear anal-theor, 72, 1768-1777, (2010) · Zbl 1182.26009
[34] Podlubny, I., Fractional differential equations, (1999), Academic press New York · Zbl 0918.34010
[35] Matignon D. Stability results for fractional differential equations with applications to control processing. In Proc IMACS. IEEE-SMC; Lille, France, 1996, p. 963-968.
[36] Wang, X.; He, Y., Projective synchronization of fractional order chaotic system based on linear separation, Phys lett A, 372, 435-441, (2008) · Zbl 1217.37035
[37] Diethelm, K.; Ford, N.; Freed, A., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear dyn, 29, 3-22, (2002) · Zbl 1009.65049
[38] Diethelm, K.; Ford, N.; Freed, A., Detailed error analysis for a fractional Adams method, Numer alg, 36, 31-52, (2004) · Zbl 1055.65098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.