×

Using spectral discretisation for the optimal \(\mathcal H_{2}\) design of time-delay systems. (English) Zbl 1222.93177

Summary: The stabilisation and robustification of a time-delay system is the topic of this article. More precisely, we want to minimise the \(\mathcal H_{2}\) norm of the transfer function corresponding to the class of linear time-invariant input-output systems with fixed time delays in the states. Due to the presence of the delays, the transfer function is a nonrational, nonlinear function, and the classical procedure which involves solving Lyapunov equations is no longer applicable. We therefore propose an approach based on a spectral discretisation applied to a reformulation of the time-delay system as an infinite-dimensional standard linear system. In this way, we obtain a large delay-free system, which serves as an approximation to the original time-delay system, and which allows the application of standard \(\mathcal H_{2}\) norm optimisation techniques. We give an interpretation of this approach in the frequency domain and relate it to the approximation of the nonlinear terms in the time-delay transfer function by means of a rational function. Using this property, we can provide some insight into the convergence behaviour of the approximation, justifying its use for the purpose of \(\mathcal H_{2}\) norm computation. Along with this, the easy availability of derivatives with respect to the original matrices allows for an efficient integration into any standard optimisation framework. A few numerical examples finally illustrate how the presented method can be employed to perform optimal \(\mathcal H_{2}\) norm design using smooth optimisation techniques.

MSC:

93D09 Robust stability
93B51 Design techniques (robust design, computer-aided design, etc.)
93C05 Linear systems in control theory
93C55 Discrete-time control/observation systems
Full Text: DOI

References:

[1] DOI: 10.1145/361573.361582 · Zbl 1372.65121 · doi:10.1145/361573.361582
[2] DOI: 10.1007/s002110050001 · Zbl 0949.65072 · doi:10.1007/s002110050001
[3] DOI: 10.1002/nla.622 · Zbl 1212.65245 · doi:10.1002/nla.622
[4] DOI: 10.1137/S0036144502417715 · Zbl 1061.65006 · doi:10.1137/S0036144502417715
[5] DOI: 10.1137/030601600 · Zbl 1092.65054 · doi:10.1137/030601600
[6] Curtain RF, An Introduction to Infinite-dimensional Linear Systems Theory (1995) · doi:10.1007/978-1-4612-4224-6
[7] DOI: 10.1109/9.29425 · Zbl 0698.93031 · doi:10.1109/9.29425
[8] Hale J, Introduction to Functional Differential Equations (1993)
[9] DOI: 10.1093/imanum/2.3.303 · Zbl 0492.65017 · doi:10.1093/imanum/2.3.303
[10] DOI: 10.1137/0731012 · Zbl 0798.65060 · doi:10.1137/0731012
[11] Jarlebring, E. Vanbiervliet, J., Michiels, W. (2009), ’Characterizing and Computing the 2Norm of Time-delay Systems by Solving the Delay Lyapunov Equation’, Technical Report No. 553, K.U. Leuven, Leuven, Belgium (Accepted for Publication in the IEEE Transactions on Automatic Control) · Zbl 1368.93094
[12] DOI: 10.1137/1.9780898718645 · Zbl 1140.93026 · doi:10.1137/1.9780898718645
[13] DOI: 10.1016/j.jprocont.2009.11.004 · doi:10.1016/j.jprocont.2009.11.004
[14] Niculescu SI, Delay Effects on Stability: A Robust Control Approach (2001)
[15] DOI: 10.3166/ejc.10.527-538 · Zbl 1293.93324 · doi:10.3166/ejc.10.527-538
[16] DOI: 10.1016/S0005-1098(03)00167-5 · Zbl 1145.93302 · doi:10.1016/S0005-1098(03)00167-5
[17] Ruszczyński A, Nonlinear Optimization (2006)
[18] DOI: 10.1137/06066120X · Zbl 1146.65038 · doi:10.1137/06066120X
[19] DOI: 10.1137/070704034 · Zbl 1185.93110 · doi:10.1137/070704034
[20] DOI: 10.1051/cocv:2007060 · Zbl 1146.65056 · doi:10.1051/cocv:2007060
[21] Vyhlídal T, ’Analysis and Synthesis of Time Delay System Spectrum’ (2003)
[22] Zhou K, Robust and Optimal Control (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.