zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Novel global robust stability criteria for interval neural networks with multiple time-varying delays. (English) Zbl 1222.93178
Summary: This Letter is concerned with the problem of robust stability analysis for interval neural networks with multiple time-varying delays and parameter uncertainties. The parameter uncertainties are assumed to be bounded in given compact sets and the activation functions are supposed to be bounded and globally Lipschitz continuous. A sufficient condition is obtained by means of Lyapunov functionals, which guarantees the existence, uniqueness and global asymptotic stability of the delayed neural network for all admissible uncertainties. This condition is in terms of a linear matrix inequality (LMI), which can be easily checked by using recently developed algorithms in solving LMIs. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.

93D09Robust stability of control systems
34K35Functional-differential equations connected with control problems
Full Text: DOI
[1] Arik, S.: IEEE trans. Circuits systems I. 49, 1211 (2002)
[2] Arik, S.: IEEE trans. Circuits systems I. 50, 156 (2003)
[3] Arik, S.: Neural networks. 17, 1027 (2004) · Zbl 1068.68118
[4] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory. SIAM studies in applied mathematics (1994) · Zbl 0816.93004
[5] Cao, J.: IEEE trans. Circuits systems I. 48, 1330 (2001)
[6] Cao, J.; Zhou, D.: Neural networks. 11, 1601 (1998) · Zbl 0967.34067
[7] Chua, L. O.: CNN: A paradigm for complexity. (1998) · Zbl 0916.68132
[8] Fang, Y.; Kincaid, T. G.: IEEE trans. Neural networks. 7, 996 (1996)
[9] Forti, M.; Tesi, A.: IEEE trans. Circuits systems I. 42, 354 (1995)
[10] Hale, J. K.; Lunel, S. M. Verduyn: Introduction to functional differential equations. (1993) · Zbl 0787.34002
[11] Hopfield, J. J.: Proc. natl. Acad. sci. USA. 81, 3088 (1984)
[12] Kolmanovskii, V. B.; Myshkis, A. D.: Introduction to the theory and applications of functional differential equations. (1999) · Zbl 0917.34001
[13] Li, C.; Liao, X.; Zhang, R.: Phys. lett. A. 328, 452 (2004)
[14] Liang, X. -B.; Wu, L. -D.: IEEE trans. Circuits systems I. 46, 748 (1999)
[15] Liao, T. -L.; Wang, F. -C.: IEEE trans. Neural networks. 11, 1481 (2000)
[16] Liao, X.; Chen, G.; Sanchez, E. N.: Neural networks. 15, 855 (2002)
[17] Liao, X.; Wang, J.; Cao, J.: Int. J. Neural systems. 13, 171 (2003)
[18] Liao, X.; Yu, J.: IEEE trans. Neural networks. 9, 1042 (1998)
[19] Michel, A. N.; Liu, D.: Qualitative analysis and synthesis of recurrent neural networks. (2002) · Zbl 1026.68115
[20] Roska, T.; Chua, L. O.: Int. J. Circuit theory appl.. 20, 469 (1992)
[21] Xu, S.; Chen, T.; Lam, J.: IEEE trans. Automat. control. 48, 900 (2003)
[22] Xu, S.; Lam, J.; Ho, D. W. C.; Zou, Y.: Phys. lett. A. 325, 124 (2004)