×

Kalman filter-based identification for systems with randomly missing measurements in a network environment. (English) Zbl 1222.93228

Summary: We consider the problem of parameter estimation and output estimation for systems in a Transmission Control Protocol (TCP) based network environment. As a result of networked-induced time delays and packet loss, the input and output data are inevitably subject to randomly missing data. Based on the available incomplete data, we first model the input and output missing data as two separate Bernoulli processes characterised by probabilities of missing data, then a missing output estimator is designed, and finally we develop a recursive algorithm for parameter estimation by modifying the Kalman filter-based algorithm. Under the stochastic framework, convergence properties of both the parameter estimation and output estimation are established. Simulation results illustrate the effectiveness of the proposed algorithms.

MSC:

93E12 Identification in stochastic control theory
93E11 Filtering in stochastic control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albertos P, Automatica 35 pp 1671– (1999) · Zbl 0935.93058
[2] DOI: 10.1002/acs.774 · Zbl 1048.93089
[3] DOI: 10.1109/9.855553 · Zbl 0973.93056
[4] DOI: 10.1007/978-1-4612-0429-9
[5] Chen JM, IEEE Transactions on Signal Processing 48 pp 1548– (2000)
[6] DOI: 10.1007/978-1-4471-3037-6
[7] Chow MY, Proceedings of IECON01: 27th Annual Conference on IEEE Industrial Electronics Society pp 1593–
[8] Ding F, Proceedings on 42nd IEEE Conference on Decision and Control pp 5555–
[9] DOI: 10.1016/j.automatica.2004.05.001 · Zbl 1162.93376
[10] Ding F, International Journal of Adaptive Control and Signal Processing 18 pp 589– (2004) · Zbl 1055.93018
[11] DOI: 10.1109/TSMCA.2008.923030
[12] Goodwin GC, Adaptive Filtering, Prediction and Control (1984)
[13] DOI: 10.1109/9.45169 · Zbl 0704.93067
[14] DOI: 10.1109/JPROC.2006.887288
[15] DOI: 10.1017/CBO9780511840371
[16] DOI: 10.1007/b137198
[17] Hsia TC, System Identification: Least Squares Methods (1977)
[18] Ibrahim JG, Applied Statistics 50 pp 361– (2001)
[19] DOI: 10.1109/9.277253 · Zbl 0785.93028
[20] DOI: 10.1080/00401706.1980.10486171
[21] Larsson EK, Automatica 38 pp 709– (2002) · Zbl 1004.93013
[22] DOI: 10.1080/00207170010018904 · Zbl 1038.93017
[23] Mirsaidi S, IEEE Transactions on Signal Processing 45 pp 1574– (1997)
[24] DOI: 10.1109/9.839967 · Zbl 0970.93514
[25] DOI: 10.1016/S0005-1098(01)00236-9 · Zbl 1001.93084
[26] DOI: 10.1109/JPROC.2006.887306
[27] DOI: 10.1016/S0967-0661(03)00036-4
[28] Titterington DM, Journal of Royal Statistics Society B 46 pp 257– (1984)
[29] Wallin R, Proceedings 39th IEEE Conference on Decision and Control pp 203–
[30] Wallin R, Automatica 37 pp 2069– (2001) · Zbl 1031.93145
[31] DOI: 10.1016/S0959-1524(03)00033-7
[32] DOI: 10.1109/37.898794
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.