Tryhuk, V.; Chrastinová, V.; Dlouhý, O. The Lie group in infinite dimension. (English) Zbl 1223.22018 Abstr. Appl. Anal. 2011, Article ID 919538, 35 p. (2011). Summary: A Lie group acting on finite-dimensional space is generated by its infinitesimal transformations and conversely, any Lie algebra of vector fields in finite dimension generates a Lie group (the first fundamental theorem). This classical result is adjusted for the infinite-dimensional case. We prove that the (local, \(C^{\infty}\) smooth) action of a Lie group on infinite-dimensional space (a manifold modelled on \(\mathbb R^{\infty}\)) may be regarded as a limit of finite-dimensional approximations and the corresponding Lie algebra of vector fields may be characterized by certain finiteness requirements. The result is applied to the theory of generalized (or higher-order) infinitesimal symmetries of differential equations. Reviewer: Liviu Popescu (Craiova) Cited in 3 Documents MSC: 22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties 34C14 Symmetries, invariants of ordinary differential equations Keywords:Lie groups PDFBibTeX XMLCite \textit{V. Tryhuk} et al., Abstr. Appl. Anal. 2011, Article ID 919538, 35 p. (2011; Zbl 1223.22018) Full Text: DOI EuDML OA License References: [1] R. L. Anderson and N. H. Ibragimov, Lie-Bäcklund Transformations in Applications, vol. 1 of SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1979. · Zbl 1063.35528 · doi:10.1088/0031-8949/20/3-4/024 [2] I. M. Anderson, N. Kamran, and P. J. Olver, “Internal, external, and generalized symmetries,” Advances in Mathematics, vol. 100, no. 1, pp. 53-100, 1993. · Zbl 0809.58044 · doi:10.1006/aima.1993.1029 [3] N. Kamran, Selected Topics in the Geometrical Study of Differential Equations, vol. 96 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, Washington, DC, USA, 2002. · Zbl 1134.58001 [4] P. J. Olver, Applications of Lie Groups to Differential Equations, vol. 107 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1986. · Zbl 0588.22001 [5] P. J. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, UK, 1995. · Zbl 0837.58001 [6] A. M. Vinogradov, I. S. Krasil’shchik, and V. V. Lychagin, Introduction to the Theory of Nonlinear Differential Equations, “Nauka”, Moscow, Russia, 1986. · Zbl 0592.35002 [7] A. M. Vinogradov, Cohomological Analysis of Partial Differential Equations and Secondary Calculus, vol. 204 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, USA, 2001. · Zbl 1152.58308 [8] J. Chrastina, “From elementary algebra to Bäcklund transformations,” Czechoslovak Mathematical Journal, vol. 40(115), no. 2, pp. 239-257, 1990. · Zbl 0726.58041 [9] J. Chrastina, The Formal Theory of Differential Equations, vol. 6 of Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis. Mathematica, Masaryk University, Brno, Czech Republic, 1998. · Zbl 0906.35002 [10] V. Tryhuk and V. Chrastinová, “Automorphisms of curves,” Journal of Nonlinear Mathematical Physics, vol. 16, no. 3, pp. 259-281, 2009. · Zbl 1184.58003 · doi:10.1142/S1402925109000224 [11] V. Chrastinová and V. Tryhuk, “Generalized contact transformations,” Journal of Applied Mathematics, Statistics and Informatics, vol. 3, no. 1, pp. 47-62, 2007. [12] V. Tryhuk and V. Chrastinová, “On the mapping of jet spaces,” Journal of Nonlinear Mathematical Physics, vol. 17, no. 3, pp. 293-310, 2010. · Zbl 1207.58004 · doi:10.1142/S140292511000091X [13] V. Chrastinová and V. Tryhuk, “Automorphisms of submanifolds,” Advances in Difference Equations, vol. 2010, Article ID 202731, 26 pages, 2010. · Zbl 1197.53009 · doi:10.1155/2010/202731 [14] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Mathematics and Its Applications, D. Reidel, Dordrecht, The Netherlands, 1985. · Zbl 0558.53040 [15] J. Mike\vs, A. Van, and I. Hinterleitner, Geodesic Mappings and Some Generalizations, Palacký University Olomouc, Faculty of Science, Olomouc, Czech Republic, 2009. [16] V. N. Chetverikov, “On the structure of integrable \?-fields,” Differential Geometry and Its Applications, vol. 1, no. 4, pp. 309-325, 1991. · Zbl 0782.58054 · doi:10.1016/0926-2245(91)90011-W [17] L. P. Eisenhart, Continuous Groups of Transformations, Princeton University Press, 1933. · Zbl 0008.10801 [18] É. Cartan, Les systèmes extérieurs et leurs applications géométriques, Hermann, Paris, France, 1946. · Zbl 0211.12701 [19] É. Cartan, Les systèmes extérieurs et leurs applications géométriques, Actualits scientifiques et industrielles. No. 994, Hermann, Paris, France, 2nd edition, 1971. · Zbl 0211.12701 [20] V. Guillemin and S. Sternberg, Geometric Asymptotics, Mathematical Surveys, No. 1, American Mathematical Society, Providence, RI, USA, 1977. · Zbl 0364.53011 [21] A. Kushner, V. Lychagin, and V. Rubtsov, Contact Geometry and Non-Linear Differential Equations, vol. 101 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, UK, 2007. · Zbl 1122.53044 [22] É. Goursat, Le\ccons sur l’intégration des équations aux dérivées partielles premier ordre, Zweite Auflage, Paris, France, 1891. · JFM 23.0401.02 [23] É. Goursat, Le\ccons sur l’intégration des équations aux dérivées partielles premier ordre, J. Hermann, Paris, France, 1920. · JFM 48.0537.05 [24] J. Chrastina, “What the differential equations should be,” in Proceedings of the Conference on Differential Geometry and Its Applications, Part 2, pp. 41-50, Univ. J. E. Purkyn\ve, Brno, Czech Republic, 1984. · Zbl 0571.58030 [25] J. Chrastina, “On formal theory of differential equations. I,” \vCasopis Pro P Matematiky, vol. 111, no. 4, pp. 353-383, 1986. · Zbl 0638.35008 [26] J. Chrastina, “On formal theory of differential equations. II,” \vCasopis Pro P Matematiky, vol. 114, no. 1, pp. 60-105, 1989. · Zbl 0703.34001 [27] J. Chrastina, “On formal theory of differential equations. III,” Mathematica Bohemica, vol. 116, no. 1, pp. 60-90, 1991. · Zbl 0728.58041 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.