zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On majorization, favard and Berwald inequalities. (English) Zbl 1223.26006
Summary: We obtain extensions of majorization type results and extensions of weighted Favard’s and Berwald’s inequality. We prove positive semi-definiteness of matrices generated by differences deduced from majorization type results and differences deduced from weighted Favard’s and Berwald’s inequality. This implies a surprising property of exponentially convexity and log-convexity of these differences which allows us to deduce Lyapunov’s and Dresher’s inequalities for these differences, which are improvements of majorization type results and weighted Favard’s and Berwald’s inequalities. Analogous Cauchy’s type means, as equivalent forms of exponentially convexity and log-convexity, are also studied and the monotonicity properties are proved.

26A24Differentiation of functions of one real variable
26A51Convexity, generalizations (one real variable)
26D15Inequalities for sums, series and integrals of real functions
Full Text: EMIS EuDML