×

Oscillation of second-order sublinear impulsive differential equations. (English) Zbl 1223.34049

Summary: Oscillation criteria obtained by Kusano and Onose (1973) and by Belohorec (1969) are extended to second-order sublinear impulsive differential equations of Emden-Fowler type:
\[ x''(t) + p(t)|x(\tau(t))|^{\alpha - 1}x(\tau(t)) = 0,\quad t\neq\theta_k; \]
\[ \Delta x'(t)|_{t=\theta_k} + q_k|x(\tau(\theta_k))|^{\alpha-1}x(\tau(\theta_{k})) = 0;\quad \Delta x(t)|_{t=\theta_{k}} = 0,\;(0 < \alpha < 1) \]
by considering the cases \(\tau(t) \leq t\) and \(\tau(t) = t\), respectively. Examples are inserted to show how impulsive perturbations greatly affect the oscillation behavior of the solutions.

MSC:

34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34A37 Ordinary differential equations with impulses
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. Kusano and H. Onose, “Nonlinear oscillation of a sublinear delay equation of arbitrary order,” Proceedings of the American Mathematical Society, vol. 40, pp. 219-224, 1973. · Zbl 0268.34075 · doi:10.2307/2038666
[2] H. E. Gollwitzer, “On nonlinear oscillations for a second order delay equation,” Journal of Mathematical Analysis and Applications, vol. 26, pp. 385-389, 1969. · Zbl 0169.11401 · doi:10.1016/0022-247X(69)90161-9
[3] V. N. Sevelo and O. N. Odaric, “Certain questions on the theory of the oscillation (non-oscillation) of the solutions of second order differential equations with retarded argument,” Ukrainskii Matematicheskii Zhurnal, vol. 23, pp. 508-516, 1971 (Russian). · Zbl 0238.34115 · doi:10.1007/BF01085475
[4] S. Belohorec, “Two remarks on the properties of solutions of a nonlinear differential equation,” Acta Facultatis Rerum Naturalium Universitatis Comenianae/Mathematica, vol. 22, pp. 19-26, 1969. · Zbl 0271.34045
[5] D. D. Bainov, Yu. I. Domshlak, and P. S. Simeonov, “Sturmian comparison theory for impulsive differential inequalities and equations,” Archiv der Mathematik, vol. 67, no. 1, pp. 35-49, 1996. · Zbl 0856.34033 · doi:10.1007/BF01196165
[6] K. Gopalsamy and B. G. Zhang, “On delay differential equations with impulses,” Journal of Mathematical Analysis and Applications, vol. 139, no. 1, pp. 110-122, 1989. · Zbl 0687.34065 · doi:10.1016/0022-247X(89)90232-1
[7] J. Yan, “Oscillation properties of a second-order impulsive delay differential equation,” Computers & Mathematics with Applications, vol. 47, no. 2-3, pp. 253-258, 2004. · Zbl 1050.34098 · doi:10.1016/S0898-1221(04)90022-3
[8] C. Yong-shao and F. Wei-zhen, “Oscillations of second order nonlinear ODE with impulses,” Journal of Mathematical Analysis and Applications, vol. 210, no. 1, pp. 150-169, 1997. · Zbl 0877.34014 · doi:10.1006/jmaa.1997.5378
[9] Z. He and W. Ge, “Oscillations of second-order nonlinear impulsive ordinary differential equations,” Journal of Computational and Applied Mathematics, vol. 158, no. 2, pp. 397-406, 2003. · Zbl 1042.34063 · doi:10.1016/S0377-0427(03)00474-6
[10] C. Huang, “Oscillation and nonoscillation for second order linear impulsive differential equations,” Journal of Mathematical Analysis and Applications, vol. 214, no. 2, pp. 378-394, 1997. · Zbl 0895.34031 · doi:10.1006/jmaa.1997.5572
[11] J. Luo, “Second-order quasilinear oscillation with impulses,” Computers & Mathematics with Applications, vol. 46, no. 2-3, pp. 279-291, 2003. · Zbl 1063.34004 · doi:10.1016/S0898-1221(03)90031-9
[12] A. Özbekler and A. Zafer, “Sturmian comparison theory for linear and half-linear impulsive differential equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 63, no. 5-7, pp. e289-e297, 2005. · Zbl 1159.34306 · doi:10.1016/j.na.2005.01.087
[13] A. Özbekler and A. Zafer, “Picone’s formula for linear non-selfadjoint impulsive differential equations,” Journal of Mathematical Analysis and Applications, vol. 319, no. 2, pp. 410-423, 2006. · Zbl 1100.34012 · doi:10.1016/j.jmaa.2005.06.019
[14] G. Ballinger and X. Liu, “Permanence of population growth models with impulsive effects,” Mathematical and Computer Modelling, vol. 26, no. 12, pp. 59-72, 1997. · Zbl 1185.34014 · doi:10.1016/S0895-7177(97)00240-9
[15] Z. Lu, X. Chi, and L. Chen, “Impulsive control strategies in biological control of pesticide,” Theoretical Population Biology, vol. 64, no. 1, pp. 39-47, 2003. · Zbl 1100.92071 · doi:10.1016/S0040-5809(03)00048-0
[16] J. Sun, F. Qiao, and Q. Wu, “Impulsive control of a financial model,” Physics Letters A, vol. 335, no. 4, pp. 282-288, 2005. · Zbl 1123.91325 · doi:10.1016/j.physleta.2004.12.030
[17] S. Tang and L. Chen, “Global attractivity in a “food-limited” population model with impulsive effects,” Journal of Mathematical Analysis and Applications, vol. 292, no. 1, pp. 211-221, 2004. · Zbl 1062.34055 · doi:10.1016/j.jmaa.2003.11.061
[18] S. Tang, Y. Xiao, and D. Clancy, “New modelling approach concerning integrated disease control and cost-effectivity,” Nonlinear Analysis: Theory, Methods & Applications, vol. 63, no. 3, pp. 439-471, 2005. · Zbl 1078.92059 · doi:10.1016/j.na.2005.05.029
[19] V. Lakshmikantham, D. D. Baĭnov, and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6 of Series in Modern Applied Mathematics, World Scientific, Teaneck, NJ, USA, 1989. · Zbl 0719.34002
[20] A. M. Samoĭlenko and N. A. Perestyuk, Impulsive Differential Equations, vol. 14 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific, River Edge, NJ, USA, 1995. · doi:10.1142/9789812798664
[21] M. Akhmetov and R. Sejilova, “The control of the boundary value problem for linear impulsive integro-differential systems,” Journal of Mathematical Analysis and Applications, vol. 236, no. 2, pp. 312-326, 1999. · Zbl 0943.93007 · doi:10.1006/jmaa.1999.6428
[22] D. Bainov and V. Covachev, Impulsive Differential Equations with a Small Parameter, vol. 24 of Series on Advances in Mathematics for Applied Sciences, World Scientific, River Edge, NJ, USA, 1994. · Zbl 0828.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.