zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Application of a modified rational harmonic balance method for a class of strongly nonlinear oscillators. (English) Zbl 1223.34055
Summary: An analytical approximate technique for conservative nonlinear oscillators is proposed. This method is a modification of the rational harmonic balance method in which analytical approximate solutions have rational form. This approach gives us the frequency of the motion as a function of the amplitude of oscillation. We find that this method works very well for the whole range of parameters, and excellent agreement of the approximate frequencies with the exact one has been demonstrated and discussed. The most significant features of this method are its simplicity and its excellent accuracy for the whole range of oscillation amplitude values and the results reveal that this technique is very effective and convenient for solving conservative truly nonlinear oscillatory systems with complex nonlinearities.

34C15Nonlinear oscillations, coupled oscillators (ODE)
70K20Stability of nonlinear oscillations (general mechanics)
Full Text: DOI
[1] Mickens, R. E.: Oscillations in planar dynamics systems. (1996) · Zbl 0840.34001
[2] He, J. H.: Non-perturbative methods for strongly nonlinear problems. (2006)
[3] Amore, P.; Raya, A.; Fernández, F. M.: Eur. J. Phys.. 26, 1057 (2005)
[4] He, J. H.: Int. J. Non-linear mech.. 37, 309 (2002)
[5] Darvishi, M. T.; Karami, A.; Shin, B. C.: Phys. lett. A. 372, 5381 (2008)
[6] Wang, S. Q.; He, J. H.: Chaos solitons fractals. 35, 688 (2008)
[7] He, J. H.: Chaos solitons fractals. 34, 1430 (2007)
[8] He, J. H.; Wu, X. H.: Chaos solitons fractals. 29, 108 (2006)
[9] He, J. H.: Int. J. Non-linear sci. Numer. simul.. 6, 207 (2005)
[10] Beléndez, A.; Hernández, A.; Beléndez, T.; Fernández, E.; Álvarez, M. L.; Neipp, C.: Int. J. Non-linear sci. Numer. simul.. 8, 79 (2007)
[11] Gorji, M.; Ganji, D. D.; Soleimani, S.: Int. J. Non-linear sci. Numer. simul.. 8, 319 (2007)
[12] Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A.: Eur. J. Phys.. 28, 93 (2007)
[13] Beléndez, A.; Hernández, A.; Márquez, A.; Beléndez, T.; Neipp, C.: Eur. J. Phys.. 27, 539 (2006)
[14] Rafei, M.; Ganji, D. D.: Int. J. Non-linear sci. Numer. simul.. 7, 321 (2006)
[15] Hu, H.; Tang, J. H.: J. sound vibration. 294, 637 (2006)
[16] Lim, C. W.; Wu, B. S.: Phys. lett. A. 311, 365 (2003)
[17] Beléndez, A.; Hernández, A.; Beléndez, T.; Álvarez, M. L.; Gallego, S.; Ortuño, M.; Neipp, C.: J. sound vibration. 302, 1018 (2007)
[18] He, J. H.: Int. J. Mod. phys. B. 20, 1141 (2006)
[19] Mickens, R. E.; Semwogerere, D.: J. sound vibration. 195, 528 (1996)
[20] Beléndez, A.; Méndez, D. I.; Beléndez, T.; Hernández, A.; Álvarez, M. L.: J. sound vibration. 314, 775 (2008)
[21] Ramos, J. I.: J. sound vibration. (2008)
[22] Beléndez, A.; Gimeno, E.; Fernández, E.; Méndez, D. I.; Álvarez, M. L.: Phys. scr.. 77, 065004 (2008)