×

Application of a modified rational harmonic balance method for a class of strongly nonlinear oscillators. (English) Zbl 1223.34055

Summary: An analytical approximate technique for conservative nonlinear oscillators is proposed. This method is a modification of the rational harmonic balance method in which analytical approximate solutions have rational form. This approach gives us the frequency of the motion as a function of the amplitude of oscillation. We find that this method works very well for the whole range of parameters, and excellent agreement of the approximate frequencies with the exact one has been demonstrated and discussed. The most significant features of this method are its simplicity and its excellent accuracy for the whole range of oscillation amplitude values and the results reveal that this technique is very effective and convenient for solving conservative truly nonlinear oscillatory systems with complex nonlinearities.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
70K20 Stability for nonlinear problems in mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Mickens, R. E., Oscillations in Planar Dynamics Systems (1996), World Scientific: World Scientific Singapore · Zbl 1232.34045
[2] He, J. H., Non-perturbative Methods for Strongly Nonlinear Problems (2006), dissertation.de-Verlag im Internet GmbH: dissertation.de-Verlag im Internet GmbH Berlin
[3] Amore, P.; Raya, A.; Fernández, F. M., Eur. J. Phys., 26, 1057 (2005) · Zbl 1080.70014
[4] He, J. H., Int. J. Non-Linear Mech., 37, 309 (2002) · Zbl 1116.34320
[5] Darvishi, M. T.; Karami, A.; Shin, B. C., Phys. Lett. A, 372, 5381 (2008) · Zbl 1223.70065
[6] Wang, S. Q.; He, J. H., Chaos Solitons Fractals, 35, 688 (2008) · Zbl 1210.70023
[7] He, J. H., Chaos Solitons Fractals, 34, 1430 (2007) · Zbl 1152.34327
[8] He, J. H.; Wu, X. H., Chaos Solitons Fractals, 29, 108 (2006) · Zbl 1147.35338
[9] He, J. H., Int. J. Non-Linear Sci. Numer. Simul., 6, 207 (2005) · Zbl 1401.65085
[10] Beléndez, A.; Hernández, A.; Beléndez, T.; Fernández, E.; Álvarez, M. L.; Neipp, C., Int. J. Non-Linear Sci. Numer. Simul., 8, 79 (2007)
[11] Gorji, M.; Ganji, D. D.; Soleimani, S., Int. J. Non-Linear Sci. Numer. Simul., 8, 319 (2007)
[12] Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A., Eur. J. Phys., 28, 93 (2007) · Zbl 1119.70017
[13] Beléndez, A.; Hernández, A.; Márquez, A.; Beléndez, T.; Neipp, C., Eur. J. Phys., 27, 539 (2006)
[14] Rafei, M.; Ganji, D. D., Int. J. Non-Linear Sci. Numer. Simul., 7, 321 (2006)
[15] Hu, H.; Tang, J. H., J. Sound Vibration, 294, 637 (2006) · Zbl 1243.34049
[16] Lim, C. W.; Wu, B. S., Phys. Lett. A, 311, 365 (2003) · Zbl 1055.70009
[17] Beléndez, A.; Hernández, A.; Beléndez, T.; Álvarez, M. L.; Gallego, S.; Ortuño, M.; Neipp, C., J. Sound Vibration, 302, 1018 (2007)
[18] He, J. H., Int. J. Mod. Phys. B, 20, 1141 (2006) · Zbl 1102.34039
[19] Mickens, R. E.; Semwogerere, D., J. Sound Vibration, 195, 528 (1996) · Zbl 1235.34135
[20] Beléndez, A.; Méndez, D. I.; Beléndez, T.; Hernández, A.; Álvarez, M. L., J. Sound Vibration, 314, 775 (2008)
[21] Ramos, J. I., J. Sound Vibration (2008)
[22] Beléndez, A.; Gimeno, E.; Fernández, E.; Méndez, D. I.; Álvarez, M. L., Phys. Scr., 77, 065004 (2008) · Zbl 1145.70012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.