zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Function projective synchronization of different chaotic systems with uncertain parameters. (English) Zbl 1223.34077
Summary: This Letter investigates the function projective synchronization of different chaotic systems with unknown parameters. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of two different chaotic systems asymptotically synchronized up to a desired scaling function. Numerical simulations on Lorenz system and Newton-Leipnik system are presented to verify the effectiveness of the proposed scheme.

34C28Complex behavior, chaotic systems (ODE)
34H10Chaos control (ODE)
34D08Characteristic and Lyapunov exponents
93C40Adaptive control systems
Full Text: DOI
[1] Pecora, L. M.; Carroll, T. L.: Phys. rev. Lett.. 64, 821 (1990)
[2] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phys. rev. Lett.. 76, 1804 (1996)
[3] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.: Phys. rev. E. 51, 980 (1995)
[4] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phys. rev. Lett.. 78, 4193 (1997)
[5] Boccaletti, S.; Valladares, D. L.: Phys. rev. E. 62, 7497 (2000)
[6] Hramov, A. E.; Koronovskii, A. A.: Chaos. 14, 603 (2004)
[7] Hramov, A. E.; Koronovskii, A. A.: Europhys. lett.. 72, No. 6, 901 (2005)
[8] Mainieri, R.; Rehacek, J.: Phys. rev. Lett.. 82, 304 (1999)
[9] Xu, D.: Phys. rev. E. 63, 27201 (2001)
[10] Xu, D.; Li, Z.; Bishop, S.: Chaos. 11, 439 (2001)
[11] Xu, D.; Chee, C. Y.: Phys. rev. E. 66, 046218 (2002)
[12] Li, Z.; Xu, D.: Phys. lett. A. 282, 175 (2001)
[13] Xu, D.; Ong, W. L.; Li, Z.: Phys. lett. A. 305, 167 (2002)
[14] Wen, G.; Xu, D.: Chaos solitons fractals. 26, 71 (2005)
[15] Yan, J.; Li, C.: Chaos solitons fractals. 26, 1119 (2005)
[16] Jia, Q.: Phys. lett. A. 370, 40 (2007)
[17] Li, Z.; Xu, D.: Chaos solitons fractals. 22, 477 (2004)
[18] Li, G. H.: Chaos solitons fractals. 32, 1786 (2007)
[19] Chen, Y.; Li, X.: Int. J. Mod. phys. C. 18, 883 (2007)
[20] Tang, X. H.; Lu, J. A.; Zhang, W. W.: China dynam. Control. 0705, 216 (2007)