×

He’s homotopy perturbation method for solving heat-like and wave-like equations with variable coefficients. (English) Zbl 1223.35294

Summary: In this Letter, He’s homotopy perturbation method is applied to heat-like and wave-like equations with variable coefficients. The solutions are introduced in this Letter are in recursive sequence forms which can be used to obtain the closed form of the solutions if they are required. The method is tested on various examples which are revealing the effectiveness and the simplicity of the method.

MSC:

35Q70 PDEs in connection with mechanics of particles and systems of particles
35K05 Heat equation
35L05 Wave equation
35G20 Nonlinear higher-order PDEs
65N20 Numerical methods for ill-posed problems for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Holliday, J. R.; Rundle, J. B.; Tiampo, K. F., Tectonophysics, 413, 87 (2006)
[2] Akhmetov, A. A., Cryogenics, 43, 317 (2003)
[3] Manolis, G. D.; Rangelov, T. V., Soil Dyn. Earthquake Eng., 26, 952 (2006)
[4] Nochetto, R. H.; Pyo, J. H., Math. Comput., 74, 521 (2005)
[5] Wazwaz, A. M.; Gorguis, A., Appl. Math. Comput., 149, 15 (2004)
[6] Momani, S., Appl. Math. Comput., 165, 459 (2005)
[7] Shou, D. H.; He, J. H., Phys. Lett. A, 372, 233 (2008)
[8] He, J. H., Non-Perturbative Methods for Strongly Nonlinear Problems (2006), dissertation.de-Verlag im Internet GmbH: dissertation.de-Verlag im Internet GmbH Berlin
[9] He, J. H., Int. J. Mod. Phys. B, 20, 10, 1141 (2006)
[10] He, J. H., Int. J. Nonlinear Mech., 35, 37 (2000)
[11] He, J. H., Comput. Methods Appl. Mech. Eng., 178, 257 (1999)
[12] He, J. H., Chaos Solitons Fractals, 26, 695 (2005)
[13] He, J. H., Int. J. Nonlinear Sci. Numer. Simul., 6, 207 (2005)
[14] Öziş, T.; Yıldırım, A., Chaos Solitons Fractals, 34, 3, 989 (2007)
[15] Öziş, T.; Yıldırım, A., Int. J. Nonlinear Sci. Numer. Simul., 8, 2, 239 (2007)
[16] Öziş, T.; Yıldırım, A., Int. J. Nonlinear Sci. Numer. Simul., 8, 2, 243 (2007)
[17] Yıldırım, A.; Öziş, T., Phys. Lett. A, 369, 70 (2007)
[18] Yıldırım, A., Int. J. Nonlinear Sci. Numer. Simul., 9, 2, 111 (2008)
[20] Abbasbandy, S., Chaos Solitons Fractals, 31, 1243 (2007)
[21] Golbabi, A.; Keramati, B., Chaos Solitons Fractals, 37, 5, 1528 (2008)
[22] Abbasbandy, S., Chaos Solitons Fractals, 30, 1206 (2006)
[23] Cvetianin, L., Chaos Solitons Fractals, 30, 1221 (2006)
[24] Beléndez, A.; Beléndez, T.; Markuez, A.; Neipp, C., Chaos Solitons Fractals, 37, 3, 770 (2008)
[25] Siddiqui, A. M.; Zeb, A.; Ghori, Q. K.; Benharbit, A. M., Chaos Solitons Fractals, 36, 1, 182 (2008)
[26] Odibat, Z.; Momani, S., Chaos Solitons Fractals, 36, 1, 167 (2008)
[27] Chun, C., Chaos Solitons Fractals, 34, 1130 (2007)
[28] Siddiqui, A. M.; Ahmed, M.; Ghori, Q. K., Chaos Solitons Fractals, 33, 1006 (2007)
[29] Al-Khaled, K., Chaos Solitons Fractals, 33, 678 (2007)
[32] Wanq, Q., Chaos Solitons Fractals, 35, 5, 843 (2008)
[33] Siddiqui, A. M.; Mahmood, R.; Ghori, Q. K., Chaos Solitons Fractals, 35, 1, 140 (2008)
[34] Ghori, Q. K.; Ahmed, M.; Siddiqui, A. M., Int. J. Nonlinear Sci. Numer. Simul., 8, 2, 179 (2007)
[35] Rana, M. A.; Siddiqui, A. M.; Ghori, Q. K., Int. J. Nonlinear Sci. Numer. Simul., 8, 2, 185 (2007)
[36] Tari, H.; Ganji, D. D.; Rostamian, M., Int. J. Nonlinear Sci. Numer. Simul., 8, 2, 203 (2007)
[37] Ghorbani, A.; Saberi-Nadjafi, J., Int. J. Nonlinear Sci. Numer. Simul., 8, 2, 229 (2007)
[38] Belendez, A.; Hernandez, A.; Belendez, T., Int. J. Nonlinear Sci. Numer. Simul., 8, 1, 79 (2007)
[39] Ariel, P. D.; Hayat, T.; Asghar, S., Int. J. Nonlinear Sci. Numer. Simul., 7, 4, 399 (2006)
[40] Ganji, D. D.; Sadighi, A., Int. J. Nonlinear Sci. Numer. Simul., 7, 4, 411 (2006)
[41] Rafei, M.; Ganji, D. D., Int. J. Nonlinear Sci. Numer. Simul., 7, 3, 321 (2006)
[42] Siddiqui, A. M.; Mahmood, R.; Ghori, Q. K., Int. J. Nonlinear Sci. Numer. Simul., 7, 1, 7 (2006)
[43] Merlani, A. L.; Natale, G.; Salusti, E., Geophys. Astrophys. Fluid Dyn., 85, 97 (1997)
[44] Natale, G., Pure Appl. Geophys., 152, 193 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.