×

On the expected volume of the Wiener sausage. (English) Zbl 1223.60066

Author’s abstract: “We consider the expected volume of the Wiener sausage on the time interval \([0,t]\) associated with a closed ball. Let \(L(t)\) be the expected volume minus the volume of the ball. We obtain that \(L(t)\) is asymptotically equal to a constant multiple of \(t^{1/2}\) as \(t\) tends to 0 and that it is represented as an absolutely convergent power series of \(t^{1/2}\) for any \(t > 0\) in the odd dimensional cases. Moreover, the explicit form of \(L(t)\) can be given in five and seven dimensional cases.”

MSC:

60J65 Brownian motion
60D05 Geometric probability and stochastic geometry
30B10 Power series (including lacunary series) in one complex variable
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] A. M. Berezhkovskii, Yu. A. Makhnovskii and R. A. Suris, Wiener sausage volume moments, J. Math. Phys., 57 (1989), 333-346.
[2] M. van den Berg, E. Bolthausen and F. den Hollander, Moderate deviations for the volume of the Wiener sausage, Ann. of Math. (2), 153 (2001), 355-406. · Zbl 1004.60021
[3] A. N. Borodin and P. Salminen, Handbook of Brownian Motion, Birkhäuser, Basel, 1996. · Zbl 0859.60001
[4] R. K. Getoor, Some asymptotic formulas involving capacity, Z. Wahr. Verw. Gebiete, 4 (1965), 248-252. · Zbl 0295.60055
[5] Y. Hamana and H. Kesten, A large deviation result for the range of random walks and for the Wiener sausage, Probab. Theory Related Fields, 120 (2001), 183-208. · Zbl 1015.60092
[6] G. A. Hunt, Some theorems concerning Brownian motion, Trans. Amer. Math. Soc., 81 (1956), 294-319. · Zbl 0070.36601
[7] K. Itô and H. P. McKean, Diffusion Processes and Their Sample Paths, Springer-Verlag, Berlin, 1974. · Zbl 0837.60001
[8] J.-F. Le Gall, Sur le temps local d’intersection du mouvement brownien plan et la méthode de renormalisation de Varadhan, Séminaire de Probabilitiés XIX, Lecture Notes in Math., 1123 , Springer-Verlag, Berlin, 1985, pp.,314-331. · Zbl 0563.60072
[9] J.-F. Le Gall, Fluctuation results for the Wiener sausage, Ann. Probab., 16 (1988), 991-1018. · Zbl 0665.60080
[10] J.-F. Le Gall, Sur une conjecture de M. Kac, Probab. Theory Related Fields, 78 (1988), 389-402. · Zbl 0655.60067
[11] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer-Verlag, Berlin, 1966. · Zbl 0143.08502
[12] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, 4 : Direct Laplace Transforms, Gordon Breach Science Publishers, New York, 1992. · Zbl 0781.44002
[13] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, 5 : Inverse Laplace Transforms, Gordon Breach Science Publishers, New York, 1992. · Zbl 0781.44002
[14] F. Spitzer, Electrostatic capacity, heat flow and Brownian motion, Z. Wahr. Verw. Gebiete, 3 (1964), 110-121. · Zbl 0126.33505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.