Bornkamp, Björn; Bretz, Frank; Dette, Holger; Pinheiro, José Response-adaptive dose-finding under model uncertainty. (English) Zbl 1223.62158 Ann. Appl. Stat. 5, No. 2B, 1611-1631 (2011). Summary: Dose-finding studies are frequently conducted to evaluate the effect of different doses or concentration levels of a compound on a response of interest. Applications include the investigation of a new medicinal drug, a herbicide or fertilizer, a molecular entity, an environmental toxin, or an industrial chemical. In pharmaceutical drug development, dose-finding studies are of critical importance because of regulatory requirements that marketed doses are safe and provide clinically relevant efficacy. Motivated by a dose-finding study in moderate persistent asthma, we propose response-adaptive designs addressing two major challenges in dose-finding studies: uncertainty about the dose-response models and large variability in parameter estimates. To allocate new cohorts of patients in an ongoing study, we use optimal designs that are robust under model uncertainty. In addition, we use a Bayesian shrinkage approach to stabilize the parameter estimates over the successive interim analyses used in the adaptations. This approach allows us to calculate updated parameter estimates and model probabilities that can then be used to calculate the optimal design for subsequent cohorts. The resulting designs are hence robust with respect to model misspecification and additionally can efficiently adapt to the information accrued in an ongoing study. We focus on adaptive designs for estimating the minimum effective dose, although alternative optimality criteria or mixtures thereof could be used, enabling the design to address multiple objectives. In an extensive simulation study, we investigate the operating characteristics of the proposed methods under a variety of scenarios discussed by the clinical team to design the aforementioned clinical study. Cited in 13 Documents MSC: 62P10 Applications of statistics to biology and medical sciences; meta analysis 92C50 Medical applications (general) 62F15 Bayesian inference 65C60 Computational problems in statistics (MSC2010) Keywords:dose-response; drug development; minimum effective dose; optimal design; shrinkage approach Software:DoseFinding; SAS × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Atkinson, A. C., Donev, A. N. and Tobias, R. D. (2007). Optimum Experimental Designs, with SAS. Oxford Statistical Science Series 34 . Oxford Univ. Press, Oxford. · Zbl 1183.62129 [2] Atkinson, A. C. and Fedorov, V. V. (1975). Optimal design: Experiments for discriminating between several models. Biometrika 62 289-303. · Zbl 0321.62085 [3] Baltagi, B. H. (2008). Econometrics , 4th ed. Springer, Berlin. · Zbl 1216.62187 [4] Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. J. Amer. Statist. Assoc. 91 109-122. · Zbl 0870.62021 · doi:10.2307/2291387 [5] Biedermann, S., Dette, H. and Pepelyshev, A. (2006). Some robust design strategies for percentile estimation in binary response models. Canad. J. Statist. 34 603-622. · Zbl 1115.62069 · doi:10.1002/cjs.5550340404 [6] Bornkamp, B. (2006). Comparison of model-based and model-free approaches for the analysis of dose-response studies. Diploma thesis, Fakultät Statistik, Technische Univ. Dortmund. Available at . [7] Bornkamp, B., Pinheiro, J. and Bretz, F. (2010). DoseFinding: Planning and analyzing dose finding experiments. R package version 0.4-1. [8] Bretz, F., Pinheiro, J. C. and Branson, M. (2005). Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics 61 738-748. · Zbl 1079.62105 · doi:10.1111/j.1541-0420.2005.00344.x [9] Bretz, F., Hsu, J., Pinheiro, J. and Liu, Y. (2008). Dose finding-a challenge in statistics. Biom. J. 50 480-504. · doi:10.1002/bimj.200810438 [10] Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A review. Statist. Sci. 10 273-304. · Zbl 0955.62617 · doi:10.1214/ss/1177009939 [11] Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. J. Roy. Statist. Soc. Ser. A 158 419-466. [12] Cook, R. D. and Wong, W. K. (1994). On the equivalence of constrained and compound optimal designs. J. Amer. Statist. Assoc. 89 687-692. · Zbl 0799.62081 · doi:10.2307/2290872 [13] Dette, H. (1996). Lower bounds for efficiencies with applications. In Research Developments in Probability and Statistics 111-124. VSP, Utrecht. · Zbl 0872.62076 [14] Dette, H. and Titoff, S. (2009). Optimal discrimination designs. Ann. Statist. 37 2056-2082. · Zbl 1168.62066 · doi:10.1214/08-AOS635 [15] Dette, H., Bretz, F., Pepelyshev, A. and Pinheiro, J. (2008). Optimal designs for dose-finding studies. J. Amer. Statist. Assoc. 103 1225-1237. · Zbl 1205.62165 · doi:10.1198/016214508000000427 [16] Dette, H., Kiss, C., Bevanda, M. and Bretz, F. (2010). Optimal designs for the emax, log-linear and exponential models. Biometrika 97 513-518. · Zbl 1233.62146 · doi:10.1093/biomet/asq020 [17] Dragalin, V., Hsuan, F. and Padmanabhan, S. K. (2007). Adaptive designs for dose-finding studies based on sigmoid E max model. J. Biopharm. Statist. 17 1051-1070. · doi:10.1080/10543400701643954 [18] Dragalin, V., Bornkamp, B., Bretz, F., Miller, F., Padmanabhan, S. K., Patel, N., Perevozskaya, I., Pinheiro, J. and Smith, J. R. (2010). A simulation study to compare new adaptive dose-ranging designs. Statistics in Biopharmaceutical Research 2 487-512. [19] Draper, D. (1995). Assessment and propagation of model uncertainty. J. Roy. Statist. Soc. Ser. B 57 45-97. With discussion and a reply by the author. · Zbl 0812.62001 [20] Fang, K. T. and Wang, Y. (1994). Number-theoretic Methods in Statistics. Monographs on Statistics and Applied Probability 51 . Chapman & Hall, London. · Zbl 0925.65263 [21] Fedorov, V. and Leonov, S. (2001). Optimal design of dose response experiments: A model-oriented approach. Drug Information Journal 35 1373-1383. [22] Golub, G. and Pereyra, V. (2003). Separable nonlinear least squares: The variable projection method and its applications. Inverse Problems 19 R1-R26. · Zbl 1022.65014 · doi:10.1088/0266-5611/19/2/201 [23] Hjorth, J. S. U. (1994). Computer Intensive Statistical Methods: Validation, Model Selection, and Bootstrap . Chapman & Hall, London. · Zbl 0829.62001 [24] Kass, R. and Raftery, A. (1995). Bayes factors. J. Amer. Statist. Assoc. 90 773-795. · Zbl 0846.62028 · doi:10.2307/2291091 [25] King, J. and Wong, W. K. (2004). Optimal designs for the power logistic model. J. Statist. Comput. Simul. 74 779-791. · Zbl 1060.62083 · doi:10.1080/0094965031000115402 [26] Läuter, E. (1974). Experimental design in a class of models. Math. Operationsforsch. Statist. 5 379-398. · Zbl 0297.62056 · doi:10.1080/02331887408801175 [27] Miller, F., Guilbaud, O. and Dette, H. (2007). Optimal designs for estimating the interesting part of a dose-effect curve. J. Biopharm. Statist. 17 1097-1115. · doi:10.1080/10543400701645140 [28] Müller, P., Berry, D. A., Grieve, A. P. and Krams, M. (2006). A Bayesian decision-theoretic dose-finding trial. Decision Analysis 3 197-207. [29] O’Hagan, A. (1995). Fractional Bayes factors for model comparison. J. Roy. Statist. Soc. Ser. B 57 99-138. With discussion and a reply by the author. · Zbl 0813.62026 [30] O’Hagan, A. and Forster, J. (2004). Kendall’s Advanced Theory of Statistics, Volume 2B: Bayesian Inference , 2nd ed. Arnold, London. · Zbl 1058.62002 [31] Pinheiro, J., Bornkamp, B. and Bretz, F. (2006). Design and analysis of dose-finding studies combining multiple comparisons and modeling procedures. J. Biopharm. Statist. 16 639-656. · doi:10.1080/10543400600860428 [32] Pukelsheim, F. (1993). Optimal Design of Experiments . Wiley, New York. · Zbl 0834.62068 [33] Ruberg, S. J. (1995). Dose response studies. I. Some design considerations. J. Biopharm. Statist. 5 1-14. [34] Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regression . Wiley, New York. · Zbl 0721.62062 [35] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3 . Cambridge Univ. Press, Cambridge. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256 [36] Wathen, J. K. and Thall, P. F. (2008). Bayesian adaptive model selection for optimizing group sequential clinical trials. Statist. Med. 27 5586-5604. · doi:10.1002/sim.3381 [37] Wu, C. F. J. (1988). Optimal design for percentile estimation of a quantal response curve. In Optimal Design and Analysis of Experiments 213-222. Elsevier, Amsterdam. · Zbl 0697.62067 [38] Zhou, X., Joseph, L., Wolfson, D. B. and Bélisle, P. (2003). A Bayesian A -optimal and model robust design criterion. Biometrics 59 1082-1088. · Zbl 1274.62498 · doi:10.1111/j.0006-341X.2003.00124.x [39] Zhu, W. and Wong, W. K. (2000). Multiple-objective designs in a dose-response experiment. J. Biopharm. Statist. 10 1-14. · Zbl 0953.62114 · doi:10.1081/BIP-100101009 [40] Zhu, W. and Wong, W. K. (2001). Bayesian optimal designs for estimating a set of symmetric quantiles. Stat. Med. 20 123-137. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.