zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances. (English) Zbl 1223.90013
Summary: In this Letter, the synchronization problem is investigated for a class of stochastic complex networks with time delays. By utilizing a new Lyapunov functional form based on the idea of ’delay fractioning’, we employ the stochastic analysis techniques and the properties of Kronecker product to establish delay-dependent synchronization criteria that guarantee the globally asymptotically mean-square synchronization of the addressed delayed networks with stochastic disturbances. These sufficient conditions, which are formulated in terms of linear matrix inequalities (LMIs), can be solved efficiently by the LMI toolbox in Matlab. The main results are proved to be much less conservative and the conservatism could be reduced further as the number of delay fractioning gets bigger. A simulation example is exploited to demonstrate the advantage and applicability of the proposed result.

90B15Network models, stochastic (optimization)
05C82Small world graphs, complex networks (graph theory)
34D08Characteristic and Lyapunov exponents
34B45Boundary value problems for ODE on graphs and networks
34K50Stochastic functional-differential equations
37H10Generation, random and stochastic difference and differential equations
37B25Lyapunov functions and stability; attractors, repellers
Full Text: DOI
[1] Dangalchev, C.: Physica A. 338, 659 (2004)
[2] Duan, Z.; Chen, G.; Huang, L.: Phys. lett. A. 372, 3741 (2008)
[3] Gao, H.; Lam, J.; Chen, G.: Phys. lett. A. 360, 263 (2006)
[4] Li, Z.; Chen, G.: IEEE trans. Circuits syst.-II. 53, 28 (2006)
[5] Lu, W.; Chen, T.: Physica D. 198, 148 (2004)
[6] Strogatz, S.: Nature. 410, 268 (2001)
[7] Toroczkai, Z.: Los alamos sci.. 29, 94 (2005)
[8] Wang, X.; Chen, G.: IEEE circuits syst. Mag.. 3, 6 (2003)
[9] Yan, J. J.; Chang, W. D.; Hung, M. L.: Chaos solitons fractals. 29, 506 (2006)
[10] Yu, W.; Cao, J.; Lu, J.: SIAM J. Appl. dyn. Syst.. 7, 108 (2008)
[11] Hua, C.; Wang, Q.; Guan, X.: Phys. lett. A. 368, 281 (2007)
[12] Li, C. P.; Sun, W. G.; Kurths, J.: Physica A. 361, 24 (2006)
[13] Li, Z.; Lee, J.: Physica A. 387, 1369 (2008)
[14] Liu, X.; Chen, T.: Physica A. 381, 82 (2007)
[15] Wang, Z.; Liu, Y.; Li, M.; Liu, X.: IEEE trans. Neural networks. 17, 814 (2006)
[16] Gao, H.; Chen, T.: IEEE trans. Automat. control. 53, 655 (2008)
[17] Liang, J.; Wang, Z.; Liu, X.: Nonlinear dyn.. 53, 153 (2008)
[18] Liang, J.; Wang, Z.; Liu, Y.; Liu, X.: IEEE trans. Syst. man cybernetics B. 38, 1073 (2008)
[19] Sun, Y.; Cao, J.; Wang, Z.: Neurocomputing. 70, 2477 (2007)
[20] Wang, W.; Cao, J.: Physica A. 366, 197 (2006)
[21] Wang, Z.; Shu, H.; Fang, J.; Liu, X.: Nonlinear anal. Real world appl.. 7, 1119 (2006)
[22] Mou, S.; Gao, H.; Qiang, W.; Chen, K.: IEEE trans. Syst. man cybernetics B. 38, 571 (2008)
[23] Mou, S.; Zhao, Y.; Gao, H.; Qiang, W.: Int. J. Comput. math.. 8, 1255 (2008)
[24] Langville, A. N.; Stewart, W. J.: J. comput. Appl. math.. 167, 429 (2004)
[25] Arnold, L.: Random dynamical systems. (1998) · Zbl 0906.34001
[26] Khasminskii, R. Z.: Stochastic stability of differential equations. (1980) · Zbl 1259.60058
[27] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory. (1994) · Zbl 0816.93004
[28] Liu, Y.; Wang, Z.; Liu, X.: Neural networks. 19, 667 (2006) · Zbl 1102.68569
[29] Gu, K. Q.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems. (2003) · Zbl 1039.34067