Najati, Abbas On generalized Jordan derivations of Lie triple systems. (English) Zbl 1224.17008 Czech. Math. J. 60, No. 2, 541-547 (2010). Summary: Under some conditions we prove that every generalized Jordan triple derivation on a Lie triple system is a generalized derivation. Specially, we conclude that every Jordan triple \(\theta \)-derivation on a Lie triple system is a \(\theta \)-derivation. Cited in 1 Document MSC: 17A36 Automorphisms, derivations, other operators (nonassociative rings and algebras) 17A40 Ternary compositions Keywords:Lie triple system; \((\varphi ,\psi )\)-derivation; Jordan triple \((\varphi ,\psi )\)-derivation; \(\theta \)-derivation; Jordan triple \(\theta \)-derivation × Cite Format Result Cite Review PDF Full Text: DOI EuDML Link References: [1] M. Ashraf and Wafa S. M. Al-Shammakh: On generalized ({\(\theta\)}, )-derivations in rings. Int. J. Math. Game Theory and Algebra 12 (2002), 295–300. · Zbl 1076.16512 [2] W. Bertram: The Geometry of Jordan and Lie Structures. In: Lecture Notes in Math. vol. 1754, Springer-Verlag, 2000. · Zbl 1014.17024 [3] M. Brešar: Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 104 (1988), 1003–1006. · Zbl 0691.16039 [4] M. Brešar: Jordan mappings of semiprime rings. J. Algebra 127 (1989), 218–228. · Zbl 0691.16040 · doi:10.1016/0021-8693(89)90285-8 [5] M. Brešar and J. Vukman: Jordan ({\(\theta\)}, )-derivations. Glasnik Math. 46 (1991), 13–17. [6] B. Hvala: Generalized derivations in rings. Comm. Algebra. 26 (1998), 1147–1166. · Zbl 0899.16018 · doi:10.1080/00927879808826190 [7] I. N. Herstein: Jordan derivations of prime rings. Proc. Amer. Math. Soc. 8 (1958), 1104–1110. · Zbl 0216.07202 · doi:10.1090/S0002-9939-1957-0095864-2 [8] N. Jacobson: Lie and Jordan triple systems. Amer. J. Math. 71 (1949), 149–170. · Zbl 0034.16903 · doi:10.2307/2372102 [9] N. Jacobson: General representation theory of Jordan algebras. Trans. Amer. Math. Soc. 70 (1951), 509–530. · Zbl 0044.02503 · doi:10.1090/S0002-9947-1951-0041118-9 [10] W. Jing and S. Lu: Generalized Jordan derivations on prime rings and standard operator algebras. Taiwanese J. Math. 7 (2003), 605–613. · Zbl 1058.16031 [11] T. -K. Lee: Generalized derivations of left faithful rings. Comm. Algebra. 27 (1999), 4057–4073. · Zbl 0946.16026 · doi:10.1080/00927879908826682 [12] W. G. Lister: A structure theory of Lie triple systems. Trans. Amer. Math. Soc. 72 (1952), 217–242. · Zbl 0046.03404 · doi:10.1090/S0002-9947-1952-0045702-9 [13] C.-K. Liu and W.-K. Shiue: Generalized Jordan triple ({\(\theta\)}, )-derivations on semiprime rings. Taiwanese J. Math. 11 (2007), 1397–1406. · Zbl 1143.16036 [14] J. Vukman: A note on generalized derivations of semiprime rings. Taiwanese J. Math. 11 (2007), 367–370. · Zbl 1124.16030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.