zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Novikov superalgebras with $A_0=A_1A_1$. (English) Zbl 1224.17010
Summary: Novikov superalgebras are related to quadratic conformal superalgebras which correspond to the Hamiltonian pairs and play a fundamental role in completely integrable systems. In this note we show that the Novikov superalgebras with $A_0=A_1A_1$ and $\dim A_1=2$ are of type $N$ and give a class of Novikov superalgebras of type $S$ with $A_0=A_1A_1$.

17A30Nonassociative algebras satisfying other identities
Full Text: DOI EuDML
[1] A.A. Balinskii, S. P. Novikov: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Sov. Math. Dokl. 32 (1985), 228--231. · Zbl 0606.58018
[2] I.M. Gel’fand, I. Ya. Dorfman: Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl. 13 (1980), 248--262. · Zbl 0437.58009 · doi:10.1007/BF01078363
[3] I.M. Gel’fand, I.Y. Dorfman: The Schouten brackets and Hamiltonian operators. Funct. Anal. Appl. 14 (1981), 223--226. · Zbl 0455.58013 · doi:10.1007/BF01086188
[4] I.M. Gel’fand, I.Y. Dorfman: Hamiltonian operators and infinite-dimensional Lie algebras. Funct. Anal. Appl. 15 (1982), 173--187. · Zbl 0487.58008 · doi:10.1007/BF01089922
[5] V.G. Kac: Vertex Algebras for Beginners. University Lecture Series, 10. American Mathematical Society (AMS), Providence, 1998.
[6] Y.F. Kang, Z.Q. Chen: Novikov superalgebras in low dimensions. J. Nonlinear Math. Phys 16 (2009), 251--257. · Zbl 1232.17011 · doi:10.1142/S1402925109000212
[7] X.P. Xu: Quadratic conformal superalgebras. J. Algebra 231 (2000), 1--38. · Zbl 1001.17024 · doi:10.1006/jabr.1999.8346
[8] X.P. Xu: Introduction to Vertex Operator Superalgebras and Their Modules. Kluwer, Dordercht, 1998. · Zbl 0929.17030
[9] X.P. Xu: Hamiltonian operators and associative algebras with a derivation. Lett. Math. Phys. 33 (1995), 1--6. · Zbl 0837.16034 · doi:10.1007/BF00750806
[10] X.P. Xu: Hamiltonian superoperators. J. Phys A. Math. Gen. 28 (1995), 1681--1698. · Zbl 0852.58043 · doi:10.1088/0305-4470/28/6/021