[1] |
Bellman, R. E.; Kalaba, R. E.: Quasilinearization and nonlinear boundary-value problems. (1965) · Zbl 0139.10702 |

[2] |
Doolan, E. P.; Miller, J. J. H.; Schilder, W. H. A.: Uniform numerical methods for problems with initial and boundary layers. (1980) · Zbl 0459.65058 |

[3] |
Howes, F. A.: Singular perturbations and differential inequalities. 168 (1976) · Zbl 0338.34055 |

[4] |
Kadalbajoo, M. K.; Sharma, K. K.: Numerical analysis of boundary value problems for singularly perturbed differential-difference equations with small shifts of mixed type. J. optim. Theory appl. 115, 145-163 (2002) · Zbl 1023.65079 |

[5] |
Kadalbajoo, M. K.; Sharma, K. K.: An $\epsilon $-uniform fitted operator method for solving boundary value problems for singularly perturbed delay differential equationslayer behavior. Internat. J. Comput. math. 80, 1261-1276 (2003) · Zbl 1045.65063 |

[6] |
Kadalbajoo, M. K.; Sharma, K. K.: $\epsilon $-uniform fitted mesh method for singularly perturbed differential-difference equationsmixed type of shifts with layer behavior. Internat. J. Comput. math. 81, 49-62 (2004) · Zbl 1049.65072 |

[7] |
Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary-value problems for differential difference equations, IV, A nonlinear example with layer behavior. Stud. appl. Math. 84, 231-273 (1991) · Zbl 0725.34064 |