Farah, Luiz G. Local and global solutions for the non-linear Schrödinger-Boussinesq system. (English) Zbl 1224.35027 Differ. Integral Equ. 21, No. 7-8, 743-770 (2008). Summary: We study the local and global well posedness of the initial-value problem for the non-linear Schrödinger-Boussinesq system. Local existence results are proved for three initial data in Sobolev spaces of negative indices. Global results are proved using the arguments of J. Colliander, J. Holmer and N. Tzirakis [Trans. Am. Math. Soc. 360, No. 9, 4619–4638 (2008; Zbl 1158.35085)]. Cited in 1 ReviewCited in 3 Documents MSC: 35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs 35Q55 NLS equations (nonlinear Schrödinger equations) 35Q53 KdV equations (Korteweg-de Vries equations) Keywords:Schrödinger-Boussinesq system; global well posedness; initial-value problem Citations:Zbl 1158.35085 × Cite Format Result Cite Review PDF