zbMATH — the first resource for mathematics

Planar flows of incompressible heat-conducting shear-thinning fluids - existence analysis. (English) Zbl 1224.35312
Summary: We study the flow of an incompressible homogeneous fluid whose material coefficients depend on the temperature and the shear-rate. For large class of models we establish the existence of a suitable weak solution for two-dimensional flows of fluid in a bounded domain. The proof relies on the reconstruction of the globally integrable pressure, available due to considered Navier’s slip boundary conditions, and on the so-called \(L^{\infty }\)-truncation method, used to obtain the strong convergence of the velocity gradient. The important point of the approach consists in the choice of an appropriate form of the balance of energy.
35Q30 Navier-Stokes equations
35D30 Weak solutions to PDEs
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76A05 Non-Newtonian fluids
Full Text: DOI EuDML
[1] J. Bergh, J. Löfström: Interpolation Spaces. An Introduction. Grundlehren der mathe-matischen Wissenschaften, No. 223. Springer, Berlin-Heidelberg-New York, 1976.
[2] L. Boccardo, A. Dall’Aglio, T. Gallouët, L. Orsina: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147 (1997), 237–258. · Zbl 0887.35082 · doi:10.1006/jfan.1996.3040
[3] L. Boccardo, T. Gallouët: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989), 149–169. · Zbl 0707.35060 · doi:10.1016/0022-1236(89)90005-0
[4] L. Boccardo, F. Murat: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal., Theory Methods Appl. 19 (1992), 581–597. · Zbl 0783.35020 · doi:10.1016/0362-546X(92)90023-8
[5] M. Bulíček, E. Feireisl, J. Málek: A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlinear Anal., Real World Appl. 10 (2009), 992–1015. · Zbl 1167.76316 · doi:10.1016/j.nonrwa.2007.11.018
[6] M. Bulíček, J. Málek, K.R. Rajagopal: Mathematical analysis of unsteady flows of fluids with pressure, shear-rate, and temperature dependent material moduli that slip at solid boundaries. SIAM J. Math. Anal. 41 (2009), 665–707. · Zbl 1195.35239 · doi:10.1137/07069540X
[7] M. Bulíček, J. Málek, K.R. Rajagopal: On the need for compatibility of thermal and mechanical data in flow problems. Int. J. Eng. Sci. Submitted.
[8] M. Bulíček, J. Málek, K.R. Rajagopal: Navier’s slip and evolutionary Navier-Stokes like systems with pressure and shear-rate dependent viscosity. Indiana Univ. Math. J. 56 (2007), 51–85. · Zbl 1129.35055 · doi:10.1512/iumj.2007.56.2997
[9] L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35 (1982), 771–831. · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[10] L. Consiglieri: Weak solutions for a class of non-Newtonian fluids with energy transfer. J. Math. Fluid Mech. 2 (2000), 267–293. · Zbl 0974.35090 · doi:10.1007/PL00000952
[11] L. Consiglieri, J. F. Rodrigues, T. Shilkin: A limit model for unidirectional non-Newtonian flows with nonlocal viscosity. In: Trends in Partial Differential Equations of Mathematical Physics. Progress in Nonlinear Differential Equations and Their Applications 61. Birkhäuser, Basel, 2005, pp. 37–44. · Zbl 1080.35081
[12] E. Feireisl, J. Málek: On the Navier-Stokes equations with temperature-dependent transport coefficients. Differ. Equ. Nonlinear Mech., Art. ID 90616 (electronic only) (2006). · Zbl 1133.35419
[13] J. Frehse, J. Málek, M. Ružička: Large data existence result for unsteady flows of in-homogeneous shear-thickening heat-conducting incompressible fluids. Commun. Partial Differ. Equations 35 (2010), 1891–1919. · Zbl 1213.35348 · doi:10.1080/03605300903380746
[14] J. Frehse, J. Málek, M. Steinhauer: On existence results for fluids with shear dependent viscosity–unsteady flows. In: Partial Differential Equations. Proc. ICM’98 Satellite Conference, Prague, Czech Republic, August 10–16, 1998. Res. Notes Math. 406. Chapman & Hall/CRC, Boca Raton, 2000, pp. 121–129.
[15] P. Grisvard: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics 24. Pitman Adv. Publishing Program. Pitman, Boston-London-Melbourne, 1985. · Zbl 0695.35060
[16] J. Málek, J. Nečas, M. Rokyta, M. Ružička: Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman & Hall, London, 1996.
[17] J. Málek, K.R. Rajagopal, M. Ružička: Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci. 5 (1995), 789–812. · Zbl 0838.76005 · doi:10.1142/S0218202595000449
[18] K.R. Rajagopal: Mechanics of non-Newtonian fluids. In: Recent Developments in Theoretical Fluid Mechanics (Paseky, 1992). Pitman Res. Notes Math. Ser. 291. Longman Scientific & Technical, Harlow, 1993, pp. 129–162.
[19] L. Tartar: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics: Heriot-Watt Symp. Res. Notes Math. 39. Pitman, Boston, 1979, pp. 121–129.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.