Borodulin-Nadzieja, Piotr; Plebanek, Grzegorz On sequential properties of Banach spaces, spaces of measures and densities. (English) Zbl 1224.46031 Czech. Math. J. 60, No. 2, 381-399 (2010). Summary: We show that a conjunction of Mazur and Gelfand-Phillips properties of a Banach space \(E\) can be naturally expressed in terms of weak* continuity of seminorms on the unit ball of \(E^{*}\). We attempt to carry out a construction of a Banach space of the form \(C(K)\) which has the Mazur property but does not have the Gelfand-Phillips property. For this purpose, we analyze the compact spaces on which all regular measures lie in the weak* sequential closure of atomic measures, and the set-theoretic properties of generalized densities on the natural numbers. Cited in 6 Documents MSC: 46B26 Nonseparable Banach spaces 46E15 Banach spaces of continuous, differentiable or analytic functions 46E27 Spaces of measures Keywords:Gelfand-Phillips property; Mazur property; generalized density PDFBibTeX XMLCite \textit{P. Borodulin-Nadzieja} and \textit{G. Plebanek}, Czech. Math. J. 60, No. 2, 381--399 (2010; Zbl 1224.46031) Full Text: DOI arXiv EuDML Link References: [1] B. Balcar, J. Pelant, P. Simon: The space of ultrafilters on N covered by nowhere dense sets. Fundam. Math. 110 (1980), 11–24. · Zbl 0568.54004 [2] K.P. S. Bhaskara Rao, M. Bhaskara Rao: Theory of Charges. Academic Press, London, 1983. [3] A. Blass: Combinatorial cardinal characteristics of the continuum. To appear as a chapter in Handbook of Set Theory. · Zbl 1198.03058 [4] P. Borodulin-Nadzieja: On measures on minimally generated Boolean algebras. Topology Appl. 154 (2007), 3107–3124. · Zbl 1144.28006 · doi:10.1016/j.topol.2007.03.014 [5] J. Bourgain, J. Diestel: Limited operators and strict cosingularity. Math. Nachr. 119 (1984), 55–58. · Zbl 0601.47019 · doi:10.1002/mana.19841190105 [6] L. Drewnowski: On Banach spaces with the Gelfand-Phillips property. Math. Z. 193 (1986), 405–411. · Zbl 0629.46020 · doi:10.1007/BF01229808 [7] G.A. Edgar: Measurability in a Banach space II. Indiana Univ. Math. J. 28 (1979), 559–579. · Zbl 0418.46034 · doi:10.1512/iumj.1979.28.28039 [8] B. Farkas, L. Soukup: More on cardinal invariants of analytic P-ideals. Preprint. [9] W. Freedman: An extension property for Banach spaces. Colloq. Math. 91 (2002), 167–182. · Zbl 1028.46020 · doi:10.4064/cm91-2-2 [10] J. Howard: On weak* separable subsets of dual Banach spaces. Missouri J. Math. Sci 7 (1995), 116–118. · Zbl 1097.46501 [11] F. Hernandez-Hernandez, M. Hrusák: Cardinal invariants of P-ideals. Preprint. [12] O. Kalenda: Valdivia compact spaces in topology and Banach space theory. Extr. Math. 15 (2000), 1–85. · Zbl 0983.46021 [13] O. Kalenda: (I)-envelopes of unit balls and James’ characterization of reflexivity. Stud. Math. 182 (2007), 29–40. · Zbl 1139.46018 · doi:10.4064/sm182-1-2 [14] S. Koppelberg: Minimally generated Boolean algebras. Order 5 (1989), 393–406. · Zbl 0676.06019 · doi:10.1007/BF00353658 [15] S. Koppelberg: Counterexamples in minimally generated Boolean algebras. Acta Univ. Carol. Math. Phys. 29 (1988), 27–36. · Zbl 0676.06020 [16] P. Koszmider: Forcing minimal extensions of Boolean algebras. Trans. Am. Math. Soc. 351 (1999), 3073–3117. · Zbl 0922.03071 · doi:10.1090/S0002-9947-99-02145-5 [17] D.H. Leung: A Gelfand-Phillips property with respect to the weak topology. Math. Nachr. 149 (1990), 177–181. · Zbl 0765.46007 · doi:10.1002/mana.19901490114 [18] D.H. Leung: On Banach spaces with Mazur’s property. Glasg. Math. J. 33 (1991), 51–54. · Zbl 0745.46021 · doi:10.1017/S0017089500008028 [19] S. Mazur: On continuous mappings on Cartesian products. Fundam. Math. 39 (1952), 229–238. · Zbl 0050.16802 [20] S. Mercourakis: Some remarks on countably determined measure and uniform distribution of sequences. Monatsh. Math. 121 (1996), 79–111. · Zbl 0901.28009 · doi:10.1007/BF01299640 [21] G. Plebanek: On the space of continuous functions on a dydadic set. Mathematika 38 (1991), 42–49. · Zbl 0776.46019 · doi:10.1112/S0025579300006422 [22] G. Plebanek: On some properties of Banach spaces of continuous functions. Séminaire d’initiation a l’analyse 1991/92, Vol. 31 (G. Choquet et al., eds.). Université Pierre et Marie Curie, Paris, 1994. [23] G. Plebanek: On Mazur property and realcompactness in C(K). In: Topology, Measure and Fractals, Math. Res. Vol. 66 (C. Bandt et al., eds.). Akademie Verlag, 1992. · Zbl 0850.46019 [24] G. Plebanek: On Pettis integrals with separable range. Colloq. Math. 64 (1993), 71–78. · Zbl 0823.28005 [25] G. Plebanek: Compact spaces that result from adequate families of sets. Topology Appl. 65 (1995), 257–270; Erratum: Topology Appl. 72 (1996), 99. · Zbl 0869.54003 · doi:10.1016/0166-8641(95)00006-3 [26] D.P. Sinha, K.K. Arora: On the Gelfand-Phillips property in Banach spaces with PRI. Collect. Math. 48 (1997), 347–354. · Zbl 0903.46015 [27] M. Talagrand: Pettis integral and measure theory. Mem. Am. Math. Soc. 307 (1984). · Zbl 0582.46049 [28] T. Schlumprecht: Limited sets in C(K)-spaces and examples concerning the Gelfand-Phillips property. Math. Nachr. 157 (1992), 51–64. · Zbl 0797.46013 · doi:10.1002/mana.19921570105 [29] A. Wilansky: Mazur spaces. Int. J. Math. Sci. 4 (1981), 39–53. · Zbl 0466.46005 · doi:10.1155/S0161171281000021 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.